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Abstract

Transportation mode detection (TMD) by analyzing smartphones embedded sensors’ data is an emerging application for

mobility-awareness services at the government or individual level. Split Learning is a relatively new privacy-preserving distributed
machine learning technique. In vanilla split learning, a neural network is vertically distributed between the client and the server.

In this paper, we performed vanilla split learning for Transportation mode detection on smartphones sensors’ based dataset. We

showed that the Split neural network (SplitNN) has the same performance as the baseline typical deep neural network. However,
split learning requires fewer computation resources from the client and also preserves the privacy of raw data.

I. INTRODUCTION

Identifying a user’s mode of transportation based on obser-
vations of the users’ environment is a trending topic of re-
search with applications in the Internet of things, big data [1],
wireless networks [2] and artificial intelligence. Such research
can help in intelligent & environmentally sustainable transport
management systems, and smart government monitoring [3]
services in smart cities [4].

Transportation mode detection (TMD) can provide back-
ground information that can be used to provide suitable
services based on the needs of the customer. TMD is an
application of intelligent context-awareness, where wearable
devices can be used to detect the traveling mode of users.
TMD is currently approached using features such as speed,
acceleration, and direction; either on their own or in combi-
nation with geographic information system (GIS) data.

Federated learning (FL) [5], [6], [7], [8], [9] is a method
to train a global model at a server such that the privacy
of raw data of users remains preserved. However, the local
models sent by users’ devices are still subject to inference
attacks. Split Learning is a relatively new distributed learning
technique in which a neural network (NN) is usually split into
two parts. The first part is trained on the client’s end, and the
second part is trained on the server’s end. Initially, in vanilla
split learning, the client sends the label to the server. For each
epoch of the training phase, the output of the client’s NN
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portion is sent to the server. This intermediate output is fed
to the server’s portion of NN. The back-propagation is also
vertically distributed between client and server by sharing gra-
dients of corresponding specific layers. Split learning requires
less computation from the client as well as is more robust to
inference attacks than FL.

The contribution of this study is summarized as follows:

« We employed split learning for transport mode detection.
For this, we set up a split-NN (splitNN) between a client
and a server. Firstly, the labels of the data-set are sent to
the server by the client. Afterward, the split learning is
performed over a peer-to-peer (P2P) connection.

The performance of the splitNN is found the same as of
baseline typical deep learning NN.

The rest of the paper is organized as follows: Section II
illustrates the system model for vanilla split learning for TMD.
Section IIT formulates the split learning problem for TMD.
Section IV briefly describes the dataset used. Section V gives
the simulation results, and Section VI concludes our work.

II. SYSTEM MODEL

The system model for split learning comprises a client C
and a server S communicating through a P2P connection. A
splitNN W S is created which has two parts. The first and
second part of W 5" are denoted by subnet W € and subnet
W S respectively. W € is assigned to the client and W S is
assigned to the server.

The client owns the dataset D¢ (Xc;Yce), where X

is feature space, and Y is label space. Client dataset D¢
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is divided into training dataset Dtgr (Xtr; Yrr) and test
dataset Dtg (Xt1E; Yre ). The labels in label space Yrg
and Yrg are sent to the server for each batch during the
training phase of split learning as shown in Fig. 1.

III. PROBLEM FORMULATION

The problem is formulated in algorithmic form in Algorithm
1 and Algorithm 2 [10].

Algorithm 1 : Split Learning - Client

1: initialize W €

2: for t  1;:5Epochy, .x do

3: for b 1;::;Tbatchya.x do

4 fwcXtR:0: WE) Avp forward-pass
5: ServerSplitNN(A ¢.p, Y) in Algorithm 2
6: procedure CLIENTBACKPROP(dA ;)

7 Model updates W E | + W E —n dA

8 end procedure

9: end for

10: _end for

Algorithm 2 : Split Learning - Server

1: initialize W 5
2: procedure SERVERSPLITNN(A ., Y)
3 fws(Aes W Y
4 L NLLbatch -

loss

forward-pass
P sy €Y
loss function for batch b containing n instances

5: WS, «WS—n0O (W35A L

Back-propagation and model updates with learning rate n
6: CLIENTBACKPROP(dA,;, O (A.,; WD) . in

Algorithm 1
7: end procedure

P

IV. DATASET
A. Dataset Details

We used the TMD dataset as given in [11] for transport
mode detection. The dataset consists of 37 features and a label
for an instance. The description of the dataset is given in Table.

L
B. Preprocessing

We first normalized the dataset using the standard score
using sci-kit learn library.
C. Splitting

We divided the client dataset D¢ to Drr and Drtg using
Scikit-learn’s train_test_split function with test_size set to 0.2.

TABLE 1
LIST OF FEATURES AND TARGET LABEL SPACE [12]

Features Features

time accelerometer *
game_rotation_vector a
gyroscope_uncalibrated #

orientation

gyroscope
linear_acceleration 2
rotation_vector ?

sound ? speed ?

Label Description Label Space

Target Transport mode fBus, Car, Still, Train, Walkingg

2(min, max, mean, std)

V. SIMULATION RESULTS

Table. II shows the layered architecture for splitNN W SP
and base-NN W B. The Table. II also indicates the W €, W S,
and the cut-off layer. The Dropout is set with p  0:2 and
0:003. We used stochastic gradient
descent (SGD) optimizer for the training of all models. We
used PyTorch [13] for the training of both splitNN W SP and
baseline-NN W B,

We trained the splitNN W P and base-NN W B for 500

epochs. We used the weights of NN with maximum validation

learning rate is Ir

accuracy for further processing. Fig. 2 shows the training
accuracy and training loss for splitNN W 5P and base-NN W B,
The training accuracy and training loss of W P is relatively
better than the training accuracy and training loss of W B
because gradient for W 5P are calculated twice due to split
learning.

Fig. 3 shows the test accuracy and test loss for splitNN W SP
and base-NN W B,

Table. III shows the corresponding performance metrics
such as precision, recall, F1-score and accuracy on test dataset
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TABLE II
LAYERED ARCHITECTURE FOR SPLITNN W SP AND BASE-NN W B

VI. CONCLUSION

TMD plays a significantly important role in human activity

recognition. In this paper, we did split learning for TMD

establishing splitNN between a client and a server. The

splitNN shows the same classification performance as typical

deep NN. However, split learning is more robust to the

inference attacks, thus preserving the privacy of the client’s

raw data. Moreover, split learning requires fewer computation

resources from the client end.

base-NN splitNN W SP
W B
Layer Activation Value wE wS by
cutoff-layer
Input - (37,) w €
Dense Relu & Dropout 800 w €
Dense Relu & Dropout 512 cutoff-layer
Dense Relu & Dropout 800 w S
Dense Relu & Dropout 512 w S
Dense Relu & Dropout 800 w S
Dense LogSoftmax 5 w S
[1]
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Fig. 2. Training accuracy and training loss for splitNN W SP and base-NN
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Fig. 3. Test accuracy and Test loss for splitNN W SP and base-NN W B

TABLE III
PERFORMANCE METRICS OF W B AND W SP ON TEST DATASET D 1g

Precision | Recall | F-1 | Accuracy
w B 0.94 0.94 0.94 0.94
w SP 0.95 0.94 0.94 0.94

[12]

[13]

Dk . The performance metrics of splitNN W 5P and base-NN

W B on test dataset D are almost same.
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