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Abstract—We propose using federated learning (FL) in low 
Earth orbit (LEO) satellite networks for the Internet of Remote 
Things (IoRTs) to enable adaptive learning in massively networked 
devices while reducing costly traffic in satellite communication 
(SatCom). In this resource-constrained space setting, FL tech­
niques in LEO satellite-based learning can improve system energy 
efficiency and save time. However, FL raises security and risk 
concerns, as local model updates can be used to infer device 
information by a hostile federated aggregator server in space. To 
address this, we propose using homomorphic-based encryption 
and decryption security techniques for federated aggregators 
and IoRTs. We evaluate the secure learning performance of our 
proposed framework using simulations on advanced datasets and 
aggregation approach. The results show that compared to the 
benchmark scheme, the proposed secured computing networks 
improve communication overhead and latency performance.

Index Terms—6G, federated learning, security, and privacy.
I .  I n t r o d u c t i o n  &  B a c k g r o u n d

6G networking is around the comer [1]. Through the 
connected Internet of Remote Things (IoRTs), e.g., mobile 
sensors, wearable technology, smartphones, connected cars, 
and unmanned aerial vehicles (UAVs), an unexpected amount 
of data is produced, along with new smart applications i.e., 
augmented/virtual reality (AR/VR) and digital twin (DT). It is 
impractical to gather and transmit entire data to a single server 
due to communication resource limits or delays. Meanwhile, 
data protection (e.g., the GDPR in Europe [2] to protect per­
sonal data, i.e., healthcare or monetary archives), data analysis, 
and inference close to the source have become increasingly 
important in avoiding delay, communication overhead, and 
privacy breaches. Thus decentralized machine learning (DML) 
leveraging intelligence edge computing, where data is kept dis­
tributedly (locally) is one alternative to data analysis, especially 
for large-scale ML models. So federated learning (FL) expands 
the computation of AI applications onto a large number of end 
devices without infringing on privacy [3]. The key advantages 
of FL are communication efficiency and data privacy, as model 
parameters rather than raw data are transmitted. However, 
existing FL protocols have limitations that adversaries might 
use to undermine the trained model [4]—[7],

The global number of active Internet of Things (IoTs) is 
expected to nearly triple from 8.74 billion in 2020 to more
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Edge Computing), and DTP grant funded by MSIT (No. RS-2022-00155911, 
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(Kyung Hee University). Dr. CS Hong is the corresponding author.

Fig. 1: Secure FL-based LEO satellite 6G network.

than 25.4 billion in 2030 [8]. Despite the widespread deploy­
ment of mobile networks, many devices in distant places (i.e., 
deserts and oceans) still lack connectivity services. Due to 
harsh topography, communication distance, and economic and 
engineering problems, terrestrial networks (TNs) only cover 
around 20% of the worldwide land area and less than 6% 
of the earth’s surface [1], There is an agreement in academia 
and industry that satellite communication (SatCom) networks 
are a feasible supplementary alternative to TNs for achieving 
global coverage [9]—[11] and seamless connection to serve 
different computation jobs, i.e., edge-AI [12] [13]. Existing 
literature mentioned in [3], [14]-[20] discussed only satellite 
role in communication, terrestrial-based FL, and security for 
ground network devices. However, none of the previous studies 
jointly investigated LEO satellite1-based communication, FL 
computation, and security. Thus, we propose a secure FL 
computation on LEO networks. In particular, we studied FL 
in the context of LEO and space security challenges. To the 
best of our knowledge, the proposed contributions are novel in 
the given network environment, which are given as follows:

• We present a novel security-enabled LEO network to 
perform FL for IoRTs, which employs homomorphic en­
cryption (HE) at the IoRT and FL-aggregation at the LEO 
aggregator to perform the secure FL task.

• During FL, our proposed HE-based SFL-LEO protocol 
ensures the anonymity of IoRTs’ local gradients. Even if 
the LEO server colludes with numerous IoRTs, we assert 
that attackers will not obtain any meaningful knowledge 
about IoRTs’ local gradients.

hereafter the LEO satellite is considered an LEO unless otherwise stated.
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II. System Model Overview
A. LEO Satellite-based Communication Channel & Link

As illustrated in Fig. 1, the system model composes a set S  of 
S  LEO that will support a set U of U IoRTs. We consider Ka- 
band (mm-Wave) for SFL-LEO communication with the time 
division multiple access (TDMA) schemes to avoid interference 
in the network [21]. The IoRTs need to deliver their data, i.e., 
model hyperparameters, to an LEO in the time horizon T. 
The composite channel captures small and large-scale fading 
between LEO s and IoRT u  is gSyU =  /3s,u(£s,u)-1 / 2) Vs € 
S,  Vu € U, where ftStU is the Rician fading channel co­
efficient and is large-scale fading for pathloss. Here, 
d s ,u = y / ( x s ~  Xu)2 + (Vs ~  V u ) 2 + ( z s -  Zu )2 is the distance 
between LEO s and IoRT u. Thus, large-scale path loss on the 
mmWave links is ^ „ (d B )  =  ws,„ +  £s,u101og10 +
■0s,u)Vs £ 5 ,  Vu £ U, where Qs û is path loss exponent, 
luSjU is path loss at reference distance d o ,  and i ) s ,u is a zero- 
mean Gaussian random variable with standard deviation <5S,„ 
[21]. The small-scale fading coefficient is /33,M =  \ J +

y j  1+k  5 SjU, Vs e  S ,  Vu e  U, where K SyU is the Rician
factor and S 3,u ~  Af(0 ,1). Let’s simplify the channel gain:

S'.«(n) =  (<i.,i(n)) ^  20 ( \ j i + k ) „  +  y / i +k . „ J i V s e S . u e U ,

( 1 )
Thus, the signal-to-noise ratio (SNR) between this link is 
7 S,u =  Pa,™fa’'“ , Vs G S , u  € U, where ps,„ is the 
transmit power between LEO s and IoRT u. The achiev­
able data rate between satellite s and IoRT u  is r s,„ =  
B s,u log2 (1 +  7 S,u) , Vs € <S, Vu e  U, where B SiU is the 
bandwidth allocated to the link between LEO s and IoRT u.
B. Transmission Latency, Propagation, & Computation Delay

The end-to-end transmission delay of a wireless commu­
nication system is made up of two parts: propagation delay 
and transmission delay. Thus the end-to-end latency of the

^ p l o c a l

computational data offloading time of IoRT u  is t s,„ =  r’,u +
d) u , Vs e  S , Vu £  U, where D3°£al is data size that 
IoRT u  uploads to the LEO s, and c is the speed of light. 
The computation time required for learning in each IoRT u 
is proportional to its data size S(V U) in bits and the CPU 
frequency f u as i^raimns =  c^sj T>̂ ; where cu is the number 
of CPU cycles required to process one data sample. Similarly, 
the computation delay at the LEO s is ¿aggregation _  c ,s (v , )  ̂
where S ( D s) is the computational data size, cs denotes the 
number of CPU cycles required to process one bit of data, and 
f s CPU frequency of the LEO s.
C. Federated Learning Model Computation

Each IoRT u  inside the LEO s coverage region contains 
their local dataset V l°ca·1, which is used to train a local 
FL model by stochastic gradient descent (SGD) [3], where 
m u = \DU\ is the D u data samples, and m =  ’}ZuCU D u is 
overall samples of all the datasets D u. The training process is 
managed by the network operator (NO) on LEO s referred to 
as the LEO-aggregator. Each local data set Djf cal of IoRT is

unknown to the LEO-aggregator and is not shared with it. For 
compact Euclidean feature space X  and label space Y  =  [C\, 
the DNN contains C  classes, where [C] — 1,2, The 
collaborative objective of FL is to figure out which DNN model 
parameters minimize a global loss function is minw/(u ;)  =  
J2ueu rr̂ )F u{w )i where Fu is the local loss function as 
Fu (w) = J2veT>u fv(w),  where f v (w)  is the multi-class 
cross-entropy loss on a data sample {a;, y}  for one-hot-encoded 
labels at IoRT u that is dependent on the specific learning 
situation as: f v ( w ) =  —Y ^ =11y=r\ogpr {x ,w) ,  where w  
is the DNN weight matrix and pr ( x ,w )  is the probability 
value of x  e  X  in class r. We utilize the federated averaging 
(FedAvg) algorithm by i) sending the global parameters w  from 
the LEO aggregator to the IoRTs, ii) utilizing SGD, training 
the local model at the IoRTs, iii) transmitting the acquired 
local parameters to the LEO aggregator, and iv) aggregating 
the parameters via the LEO-aggregator. This method is repeated 
for multiple global epochs until convergence occurs. The local 
training stages for each IoRT u  are regarded as the ML phase. 
Every IoRT u  minimizes its loss function with i local SGD 
iterations and updates the local copy of the global model 
parameters as: w™·1 =  to"’*-1 — iyVF„(m™’*_1), where t] is 
the learning rate, n  is the global epochs, i > 1 local iterations 
in epoch n, and m "’° =  w n is configured by the obtained 
global model parameters w n. The LEO aggregates the local 
updates (w™’l)ueu  from every IoRT device u  into a new version 
of the global model parameters as w n+1 — Y ^ L=l rrrlr)w™ '1, 
and progresses to the next epoch until the global convergence 
condition is reached.
D. Security Issues in FL Model Communication

The protection of transmitted data from passive attacks, i.e., 
eavesdropping (data confidentiality [22]), which could listen to 
the transmission or use data sniffing techniques to acquire the 
IoRT’s private data if sent without encryption or insufficient 
encryption [23]. When an attacker alters data sent from the 
IoRT to the LEO, the data’s integrity is jeopardized. Man-in- 
the-middle attacks can alter data without the recipient LEO 
being aware of it. Similarly, several threats remain in allowing 
security and privacy-preserving FL [24]. 1) Inference attacks 
in FL aren’t a complete data privacy solution on their own. 
An attacker might execute inference attacks using the device’s 
model updates from local learning w™’1. The aggregation server 
may also infer device information during the model updates 
from local learning results. 2) Aggregation attacks are malicious 
adversaries that may attack the aggregation server and generate 
the aggregated global model incorrectly. Thus, the global model 
is erroneous. This will increase the time it takes for the FL 
global model to converge.

III. Proposed SFL-LEO Framework

In the proposed framework as shown in Fig. 2, the NO acts 
as the FL-task publisher (FL-TP). The steps as per the sequence 
diagram are as follows:

• Step 1: The FL-TP/NO will devise the model architecture 
for the FL-task.

• Step 2: The FL-TP/NO will also devise the aggregation 
scheme for the FL-task.

Authorized licensed use limited to: Kyunghee Univ. Downloaded on June 22,2023 at 01:34:53 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2: Sequence of interactions in SFL-LEO framework.

• Step 3: Similarly, the FL-TP/NO will also generate the 
initial model weights in”’* for the FL task as per the FL 
model architecture.

• Step 4: The FL-TP/NO will broadcast the generated model 
architecture to the IoRTs as well as the LEO aggregator.

• Step 5: The FL-TP/NO will send the aggregation scheme 
for the FL task to the LEO aggregator.

« Step 6: The FL-TP/NO will broadcast the initial model 
weights for the FL-task to the IoRTs.

Step 1 - Step 6 is utilized to initialize the FL task. Afterward, 
steps 7 - Step 16 are performed for each global epoch n.

• Step 7: The FL-TP/NO will generate the HE private 
context valid only in the ongoing global epoch n.

• Step 8: The FL-TP/NO will also generate the associated 
public context for the HE valid only in the ongoing global 
epoch n.

• Step 9: Similarly, the FL-TP/NO will broadcast the public 
context for the HE valid only in the ongoing global epoch 
n  to the IoRTs as well as the LEO aggregator.

• Step 10: The IoRTs will perform the local model training 
on the local datasets.

• Step 11: The IoRTs will encrypt their local model w™’1 
using the public context for the HE valid only in the 
ongoing global epoch n.

• Step 12: The IoRTs will send their encrypted local model 
for the current global epoch to the LEO aggregator.

• Step 13: The LEO aggregator will aggregate the encrypted 
local models using the public context for the HE valid only 
in the ongoing global epoch n  to the encrypted global 
model for the current global epoch n.

• Step 14: The LEO aggregator will send the encrypted 
global model in the ongoing global epoch n  to the FL- 
TP/NO.

• Step 15: The FL-TP/NO decrypts the encrypted global 
model for the current global epoch using the HE private 
context valid only in the ongoing global epoch n.

• Step 16: If the required level of accuracy is not achieved

and several global epochs are not reached, the FL-TP/NO 
broadcasts the decrypted global model in the ongoing 
global epoch to the IoRTs for local training in the suc­
ceeding global epoch n  +  1.

The following steps comprise the proposed SFL-LEO frame­
work. First, we deployed the network architecture, which 
included LEO and IoRTs, following the system architecture. 
Second, the NO created IoRTs’ local models and aggregation 
techniques and sent them to the IoRTs and LEOs. Following 
that, NO generates public and private HE contexts in each 
global iteration. The NO then provides the LEO and IoRTs with 
the public HE context. Then, in parallel, each IoRT u does local 
training and encrypts their local models before sending them 
to the LEO s for aggregation. Thus, following aggregation, the 
LEO sends encrypted data to the NO for decryption. Finally, 
NO transmits the decrypted local model to the IoRTs for the 
next global epoch.

IV. S y s t e m  E v a l u a t i o n  &  D i s c u s s i o n

We consider a 2000 km x 2000 km area, where the LEO 
satellite is deployed at a height of 560 km in orbit. We consider 
IoRTs U =  100 that are dispersed independently and identically 
distributed (HD) over under-served locations and are equipped 
with computing and memory to train a model of interest. 
Moreover, we assume that LEO satellites and ground-based 
cloud centers are resource-enriched; therefore, we neglect their 
computation time. It is worth noting that we evaluate IID data 
settings for IoRTs and disregard Non-HD settings since they 
only affect the accuracy of the FL global model and have no 
bearing on network security or latency. The FL-model is trained 
on the well-known MNIST and fashion-MNIST datasets [25]. 
The training data is partitioned in an HD manner into N  blocks. 
Because of low response time caused by opportunistic offline 
or delayed or expensive connections, only 10% of IoRTs are 
randomly selected to participate in the learning process in each 
learning cycle.

We used two neural networks to assess the SFL-LEO frame­
work: a dense neural network (DNN) for MNIST and a convo­
lution neural network (CNN) for Fashion-MNIST. FedAvg was 
simulated on our model using PyTorch [26]. The OpenMined 
TenSEAL is utilized for Single-Key (SK) HE deployment [27]. 
The amount of storage needed for FL aggregation is determined 
by the model design. Python’s pickle library is utilized to 
store model state_dicts. We present in Fig. 3a both model 
sizes for state_dicts, i.e., DNN (MNIST categorization) and 
CNN (Fashion-MNIST categorization) concerning their cate­
gory, e.g., an encrypted local model, an aggregated encrypted 
global model, and an aggregated decrypted global model. To 
accomplish encryption using TenSEAL, the simple unencrypted 
state_dicts is changed from tensors to the list by utilizing the 
tolistQ method. Thus, the model size is greatly expanded for 
each local and global model to protect the FL method’s input 
privacy via HE.

Our SFL-LEO findings were compared to those of a ground 
cloud server (NO), with the LEO functioning as a network 
relay. Additionally, because FL’s method is iterative, the overall 
communication overhead rises. Furthermore, all HE-encrypted

Authorized licensed use limited to: Kyunghee Univ. Downloaded on June 22,2023 at 01:34:53 UTC from IEEE Xplore.  Restrictions apply. 



2023IEEE/IFIP Network Operations and Management Symposium (NOMS 2023) - Shortpaper

s
$ m1

Encglobalmodel Decglobalmodel
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(a) Model sizes of datasets in each category (b) Convergence for MNIST dataset. (c) Convergence for Fashion-MNIST dataset.

Fig. 3: Illustration of proposed model sizes and scheme convergence time comparison with baseline

(a) Loss vs comm. time. (b) Accuracy vs comm. time. (c) Loss vs comm. time. (d) Accuracy vs. comm. time.

Fig. 4: SFL-LEO performance in LEO satellite-based communication systems as measured by the MNIST & Fashion-MNIST 
dataset with fixed local epochs E  =  10 & E  =  20.

local models are sent to the NO via LEO, where the NO 
performs the aggregate, which is insecure and may indicate 
a vulnerability.

Fig. 3b and Fig. 3c compare the model convergence time 
with global epochs for the proposed and baseline algorithms 
for both datasets when local epochs are fixed, i.e., E  =  10 
and E  =  20. Our technique outperforms the baseline in terms 
of communication time, which is a particularly critical metric 
for IoRTs. Furthermore, our approach yields a 167.713% for 
MNIST and a 169.527% for Fashion-MNIST improvement in 
communication time over the baseline. This difference demon­
strates that the proposed scheme may be used for future time- 
sensitive and secure SFL-LEO.

As shown in Fig. 4, we examine the learning performance of 
the proposed SFL-LEO framework in terms of latency and the 
number of local epochs. Each epoch is defined as the number of 
training cycles per communication round that each IoRT runs 
over its local dataset, represented by E, while communication 
time is defined as the sum of transmission time for uploading 
and downloading model parameters and propagation time.

In particular, in Fig. 4a we show the test loss when E  = 10 
compared with the baseline for communication time. It can 
be observed that the proposed scheme performs better, i.e., it 
achieves fast convergence within less time than the baseline. 
In Fig. 4b we show the test accuracy when E  — 10 compared 
with the baseline for communication time. Similarly, proposed 
schemes achieve fast results for both datasets, i.e., MNIST 
and Fashion-MNIST in terms of accuracy compared with a 
baseline, which achieves similar results but at a slower rate. The

proposed approach produces results that perform aggregation at 
LEO (more privacy from NO inference attacks), only the HE- 
encrypted global model is transferred to NO, and the baseline 
suffers from extra communication costs, i.e., inter-satellite link 
(ISL) latency and communication time between NO and LEOs 
in each communication round.

Fig. 4 demonstrates how the local number of training epochs 
affects the performance of both schemes. In particular, we 
evaluate the test loss for E  = 20 relative to the baseline 
for communication time in Fig. 4a. It can be shown that our 
approach outperforms the baseline for both datasets, achieving 
quick convergence in less time. We illustrate the test accuracy 
for E  =  20 relative to the baseline for communication time 
in Fig. 4d. Similarly, our techniques offer quick accuracy 
outcomes as compared to baseline, which obtains comparable 
results but at a slower rate.

V. C o n c l u s io n

We studied the security-aware LEO-based FL for the IoRTs. 
FL over wireless networks has the potential to significantly 
improve learning performance on future 6G networks, which 
will be required to fulfill more stringent data security, privacy, 
and communication overhead standards. Initially, the suggested 
designs considered FL and LEO system integration. The perfor­
mance evaluation shows that the proposed FL integration inside 
the LEO constellation has realistic accuracy on the MNIST 
and Fashion-MNIST datasets. SFL-LEO systems provide sig­
nificantly reduced communication overheads with privacy than 
the traditional approach. The suggested technique has minimal 
transmission costs, leakage of information, and delay.
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