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Abstract—Maritime network traffic is increasing due to the
ongoing need for trade and tourism, thus increasing the demand
for convenient, reliable, energy-efficient, and high-speed network
access at sea that could be analogous to terrestrial networks.
Therefore, to ensure the concept of a connected world under
the umbrella of sixth-generation (6G) networks, we propose the
next-generation integrated space-oceanic network, which consists
of a set of LEO satellites and marine user equipments (MUE).
This paper investigates network profit maximization (NPM) by
optimizing the MUE association and its resource allocation in
downlink communication. The formulated optimization problem
corresponds to mixed-integer nonlinear programming (MINLP).
To solve this problem, we propose an iterative algorithm based
on Bender’s decomposition (BD). Numerical results are provided
to demonstrate the convergence and effectiveness of our proposed
algorithm.

Index Terms—6G, satellite networks, maritime communication,
resource allocation, Bender decomposition.

I. INTRODUCTION

The connected world is the agenda of sixth-generation (6G),
which needs to ensure worldwide connectivity. Therefore,
humans’ activities will expand dramatically from space to
air, ground, and sea environment in this era. To make sure
the worldwide wireless coverage in the 6G networks, it is
necessary to integrate marine users equipments (MUE) to form
a multi-dimensional space-air-ground-sea network [1]. More-
over, its framework will consider the integration of networks
with extremely low latency in wireless connection with super-
high throughput demands [1].

Oceanic communication is increasing specifically in video
streaming and live surveillance, which poses the demand
for ultra-reliable low-latency communication (URLLC). This
type of network requirements cannot fulfill with the existing
network infrastructure. Moreover, the overall ocean and the
marine environment has become one of the new frontiers and
the rapidly growing areas of the world’s tourism industry.
Maritime communication is increasing quickly due to on-
going projects in deep waters, i.e., marine research & life
studies, ocean tourism, deep waters drilling platforms, rescue
& emergency operations, and offshore aquaculture. The rapid
increase in the number of boats, ships, deep-water rigs, vessels
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poses a demand for high-level connectivity with low latency
and high throughput communication. We can consider several
use cases in maritime traffic, which represents a demand for
high broadband and narrowband connection such as marine
cellular users [2], and maritime internet-of-things (MIoT)
[3] respectively. Naval operations, i.e., vessel navigation and
surveillance, also pose a demand for URLLC. Moreover,
an infotainment requirement of a passenger ship, oil & gas
drilling in deep waters, meteorological services in oceans, and
emergency rescue operations also need high-level connectivity.
All these discussed maritime network applications need rapid
and minimal investment for communication.

In the proposed network, the LEO satellites are assumed
to be suitable candidates to tackle the maritime network’s
challenges. The LEO satellite is the most prominent candidate
to enable remote location network access where terrestrial
access is not available. The LEO satellite can fulfill the quality-
of-service (QoS) demands of MUEs due to their mobility
and line-of-sight (LOS) nature, which make it suitable in
our scenario [4]. The key contributions in this work are
summarized as follows,

• We formulate a joint MUE association and resource
allocation problem to maximize the network profit in the
LEO satellite-based space-oceanic network.

• Our formulated optimization problem is mixed-integer
nonlinear programming (MINLP).

• We proposed an iterative algorithm based on Benders
decomposition to solve this MINLP.

• Numerical results demonstrate that our proposed algo-
rithm performed well in a given scenario.

The remaining paper is organized as follows. Section II
provides related work of 6G and maritime communication,
which ensures our network architecture’s originality. Section
III shows the system model and section IV presents the
optimization problem. Section V provides solution based on
Bender decomposition. Section VI provides simulation results,
and finally section VII concludes this paper.

II. RELATED WORK

Current research on next-generation networks are struggling
with the aim of 6G, where the internet of everything (IoE) is
looking like a future. Because with the quick improvement
of smart edges and rising new applications, e.g., seamless
surveillance and monitoring, increment in wireless data and
throughput requirement, and current cellular networks, even
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the 5G cannot coordinate with the rapidly increasing net-
work requirements. The 6G dynamic system must cast the
high-specialized standards of the new range and effective
transmission framework to address up-coming difficulties. The
authors sketch the potential necessities and present a review
of promising systems’ most recent research, developing to 6G
[5].

In the existing system, MUE utilizes satellite services or
onshore base stations for their communication. International
maritime satellite (Inmarsat) is responsible for marine com-
munication, but their data transportation rate is inefficient for
time-critical applications [6]. Moreover, to support maritime
communication, an offshore base station is also a reliable
means of communication. It can prolong the existing fourth
(4G) and fifth (5G) generation terrestrial cellular networks to
maritime network [7]. Moreover, maritime communication lit-
erature covers the network deployments such as [8] presented
an overview of the wireless oceanic communication network
to affirm the amount of existing sea communication frame-
works that withstand the rising communication necessities.
Maritime-LTE has also been investigated in [9] for marine
users by proposing a scheme with a phased array antenna
and user location to the LTE network. However, the maritime
communication network is still not well established to provide
seamless data connectivity.

III. SYSTEM MODEL

We consider the downlink (DL) wireless communication in
a maritime network, as shown in Fig. 1. This network topology
has a set N = {1, 2, ...., N} of floating LEO satellites1 in
space and a set M = {1, 2, ....,M} of MUEs. Here, we
consider the delay insensitive services, i.e., enhanced Mobile
Broadband (eMBB) and massive Machine Type Communica-
tions (mMTC). Moreover, we assumed each satellite has a
backhaul connection with the earth gateway or coastline base
station (CBS), depending upon their position. Satellite base
stations are deployed to serve MUE, which can be considered
boats, fishers, and private yachts. Each Satellite has uniform
constellation above the sea surface at the corresponding 3D lo-
cation denoted as dn = (xn, yn, hn), ∀n ∈ N . Similarly, each
MUE is deployed randomly in sea region dm = (xm, ym, hm)
within any satellite coverage area. We consider that network
topology remains static in the performance observation period.
To make the system realistic, we consider that each satellite
is already deployed at the desired locations dn, fulfilling the
maritime network demand optimally. We can presume each
satellite deployment in maritime networks are according to
the given algorithm in [10] at an optimal location in 3D.

A. Channel Model & Link Analysis

A typical composite channel containing both large-scale and
small-scale fading is adopted. The communication links work
over the Ka-band (26.5-40 GHz) in the considered scenario,
a well-defined millimeter wave (mmW) range sufficient for

1In the rest of paper, the LEO satellite will be considered as a satellite
unless otherwise stated.
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Fig. 1: Illustration of Integrated Space-Oceanic Network

satellite communication and future 6G links. Therefore, we
assume that each satellite n and the MUE m are equipped
with one antenna, and their large-scale channel effects on the
mmW links follow a standard model given as:

δnm = ωnm + ρnm10 log10 dnm + ψ, (1)

where δnm is denote the pathloss at mmWave frequencies
for all MUEs associated with satellite, ρnm is the slope of
the fit (pathloss exponent) and ωnm indicate the intercept
parameter, which is the pathloss (dB) for 1 meter of dis-
tance, dnm =

(√
(xn − xm)2 + (yn − ym)2 + (hn − hm)2

)

represents the distance between the satellite n and MUE m.
Moreover, ψ models the deviation in fitting (dB) which is a
Gaussian random variable with zero mean and variance ξ2nm
for 1 meter of distance. Therefore, the channel model between
the satellite n and MUE m can be define as:

gnm = βnm10−δnm/10, ∀n ∈ N , ∀m ∈ M, (2)

where βnm is the Rician fading channel coefficient, which
indicates the small-scale fading between the satellite n and
MUE m, this fading is responsible for line-of-sight (LoS)
and multi-path scattering, which occurs at each MUE m.
Specifically, adopting the Rician channel modeling between
the satellite n and MUE m is substantiated by a dominated
LoS link between both network nodes. Moreover, we assume
that the Doppler effect of mobile MUE can be compensated
from the existing frequency synchronization techniques, i.e.,
phase-locked loop [11]. The signal-to-interference-plus-noise
ratio (SINR) γnm of the satellite n and MUE m can be given
as:

γnm =
pnmgnm
Inm + σ2

, (3)

where pnm = p̄nm/knm is the transmission power of satellite
n to each MUE m over allocated resource block knm and
p̄nm is the total transmission power of satellite n to MUE
m. Moreover, σ2 denotes the additive white noise power of
the associated resource block k which has the bandwidth of
bnm. The interference from non-associated satellites to MUE
m by transmitting the same resource block k is given by
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Inm = η
∑

∀n� �=n

∑
∀m� �=m

an�m� pn�m� gn�m� , where the received

power corresponds to the transmit power received by MUE m
from the satellite n, the inter-cell interference corresponds to
all the received interference from all the others satellites n�,
∀n� �= n. Therefore, the total achievable data rate of satellite
n associated with the m MUEs can be defined as:

Rnm(pnm) =
∑

m∈M
bnm log2(1 + γnm). (4)

Similarly, anm indicate the satellite-MUE association which
can define as:

anm =

{
1, if MUE m ∈ M is served by satellite n ∈ N ,

0, otherwise.
(5)

Each satellite n ∈ N is assigned the same bandwidth denoted
by bn. This bandwidth bn is further categories equally into
associated MUEs i.e., bnm = bn∑

m∈M
anm

. This divided band-

width allocate to the communication link between satellite
n ∈ N and MUE m ∈ M, where

∑
m∈M

anm indicates all

the associated MUEs with the satellite n.

B. Data Transmission & Processing Power Model

We model the power expenditure according to [12], the
power expending by each satellite is formulated by two
parameters, firstly the data-dependent power of each satellite
n can be given as:

pdnm =
∑

m∈M
anmpnm, (6)

secondly, independent data power is the expenditure in circuit
processing and core network transmission. The power con-
sumed by independent of data in each satellite n is denoted as
pcore
n . Therefore, the power expenditure model of each satellite

n can be formulated as:

pnm(anm) = pdnm + pcore
n , (7)

for the sake of convenience, we assume the pcore
n as a constant

term for each satellite n to the core network communication.

IV. PROBLEM FORMULATION

Our objective is to provide the solution to the network profit
maximization (NPM) problem, where we need to maximize
the weighted sum throughput (sumrate) and minimize each
satellite’s power expenditure simultaneously. The weighted
sumrate and transmit power expenditure can be considered the
revenue (income) and cost (outcome) of the maritime network.
The optimization goal is to maximize the network profit,
which can be expressed as maximize the integrated network
total throughput and meanwhile minimize the transmission
power under the constraint of SINR and minimum data rate
requirement of each MUE m. We can formulate the network
profit function for the maximization as follows:

f(p,a) =
∑
n∈N

∑
m∈M

[γmRnm(pnm)− χpnm(anm)] , (8)

where p = [pnm] ∈ RN×M , χ indicate a constant value, which
denotes the fraction of revenue per unit sum-rate and cost
per unit transmit power, and γm ∈ R1×M are the weights of
different MUEs. A variable χ is utilized to show the linear
relation between sumrate and transmit power expenditure,
and χ can be updated at each iteration to increase energy
efficiency in the Dinkelbach algorithm (DA) given in [12].
Though (8) represents the linear relationship of the sumrate
and transmit power expenditure, the main disagreement of
χ is fix valued, in place of the variable given in the DA.
Besides, in our case, χ can dynamically be fixed for various
network configurations, which intensify the prevalence of
the profit measure. This framework analogous to the linear
combination structure for multiobjective optimization [13] as
well. Therefore, the optimization problem is formulated as:

max
a,p

f(p,a), (9a)

s.t.
pnmgnm
Inm + σ2

≥ Γnm, ∀n ∈ N , ∀m ∈ M, (9b)

Rnm(pnm) ≥ Rmin
nm , ∀n ∈ N , ∀m ∈ M, (9c)

0 ≤
∑

m∈M
pnm ≤ Pmax

n , ∀n ∈ N , (9d)

∑
m∈M

anm ≤ 1, ∀n ∈ N , (9e)

anm ∈ {0, 1}, ∀n ∈ N , ∀m ∈ M. (9f)

The objective function (9a) is to maximize the network profit
based on power allocation and MUE association. In constraint
(9b),Γnm is the minimum SINR requirement of each MUE m
to get services from the satellite n. Constraint (9c) means the
minimum data transmission rate by each satellite should satisfy
for each MUE m. In constraint (9d), Pmax

n is the maximum
transmit power of each satellite n. Additionally, (9e) and (9f)
ensures that MUE can associate at most one satellite at a time.
It is difficult to find a unique solution to our optimization
problem because it has several association strategies available
for NPM. The optimal solution set of a given problem can
denote as follows:

Π∗ = {(a∗,p∗) | ∀(a,p)}, (10)

where Π∗ is an optimal solution strategy to the given optimiza-
tion problem. Our goal is to find (a∗,p∗), which maximizes
the net profit by consuming less amount of power. Therefore,
the presented framework will achieve this optimal strategy.

V. GLOBAL OPTIMIZATION ALGORITHM BASED ON
BENDER DECOMPOSITION

We propose a joint MUEs association and resource allo-
cation algorithm in this section, which is based on BD and
optimization solver. BD is utilized to separate the integer and
continuous variables. We use an optimization solver for both
the integer and continuous variables problem to solve these
problems separately because it solves the problem centrally,
suitable for network topology due to remote control of satellite
constellation. Therefore, we used BD in the outer loop and
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optimization solver in an inner loop, which we describe in the
following sections. A network topology implementation and
its optimization results are given according to this framework.
BD is a famous solution method for MINLP [14]. This
algorithm decomposes the MINLP into an integer (binary)
linear programming as a master problem and continuous
non-linear programming as a subproblem [14]. The master
problem objective is to solve the integer linear programming
problem, while the subproblem is to solve the continuous
programming problem. This algorithm is based on an iterative
process that can converge when the desired condition meets.
Firstly, the initialization phase occurs for a given problem.
Then, the subproblem solves by utilizing only continuous
variables due to the fixation of integer variables. By solving
the subproblem, the continuous variables solution obtains,
and the dual variables associated with fixed integer variables
are also obtained. After getting this solution, we generate
Bender’s cut for feasibility and optimality conditions; thus,
the master problem can be solved. Subsequently, the upper
and lower bounds difference provides the stopping criterion
for this algorithm. The overall process of solving joint MUEs
association and power allocation problem is given below:

Initialization: Firstly, we consider the master problem has a
trivial solution and can generate the initialization in the given
problem. After that, we need to assign the loop counter, i.e.,
z = 1. We have association variable anm in binary form in
our problem formulation. Therefore the upper and the lower
bound can denote as aUB = 1 and aLB = 0 respectively.
Moreover, we implement a function ζ as an auxiliary variable,
representing the optimal value of the subproblem’s objective
function within the objective function of the master problem.
The initial value for the function ζ(z) as ζdown, to avoid
unbounded solution in the first iteration when no Bender
cut is added. Its value can be a huge negative, i.e., −106.

Subproblem: The idea behind subproblem construction is
to fix the value of association variables a to avoid them.
Therefore, we can express the subproblem as given in (11). We
can represent the dual variable for the constraints that fixed
association variables values, i.e., κz

nm. Hence, the subproblem
can be obtained with only power p (continuous) variables, and
it can be represented as:

min
p

f1(p, â), (11a)

s.t. f1(p, â) = −βnmRnm(pnm), ∀n ∈ N , ∀m ∈ M,
(11b)

pnmgnm
Inm + σ2

≥ Γnm, ∀n ∈ N , ∀m ∈ M, (11c)

Rnm(pnm) ≥ Rmin
nm , ∀n ∈ N , ∀m ∈ M, (11d)

0 ≤
∑

m∈M
pn,m ≤ Pmax

n , ∀n ∈ N , (11e)

anm = aznm : κz
nm, ∀n ∈ N , ∀m ∈ M. (11f)

where â are the initialized MUEs association vectors. We can
solve the subproblem by optimization solver due to its convex
nature. After solving the subproblem, we can obtain the p̂nm

Algorithm 1 Profit Maximization by Bender’s Decomposition

1: Initialize: loop counter z = 0, Uup, Udown, ζ(z), �, χ
2: while U

(z)
up − U

(z)
down > � do

3: Subproblem
4: obtain p̂nm

z and κz
nm, use optimization solver

due to convex problem
5: Bounds calculation
6: find the both upper and lower bounds (U (z)

up and
U

(z)
down) by (12) and (13)

7: Master Problem
8: step 1: increment in loop counter z = z + 1
9: step 2: put new Benders cut to problem (15)

10: step 3: solve the updated master problem
11: step 4: acquire the optimal value of ânm and ζz

12: end while

and κz
nm for solving the following steps.

Convergence Analysis: The algorithm stopping criterion is
deduced by checking its convergence, which plays a significant
role to stop this iterative algorithm. We can find the upper
bound for the master problem as:

U (z)
up = f(p̂, â). (12)

Furthermore, the lower bound can be find as:

U
(z)
down = f2(p̂,a) + ζz. (13)

Therefore, the algorithm criterion for stopping can be given
as: {

U
(z)
up − U

(z)
down ≤ �, stop,

otherwise, continue,
(14)

where tolerance parameter � can be pre-defined. After the
convergence of algorithm, optimal value of a∗(z) and p∗(z)

can be obtained.
Master Problem: This problem only deals with association

variables a(z) in the network. When the loop counter update
as z = z+1, then the following problem need to solve which
is:

min
a,ζ

f2(p̂,a) + ζ, (15a)

s.t. f2(p̂,a) = χnm

∑
n∈N

∑
m∈M

enm(anm), (15b)

ζ ≥ κ̂zT
nm(ânm − âz

nm)

−
∑
n∈N

∑
m∈M

βnmRnm(p̂z
nm), ∀n,m, (15c)

ζ ≥ ζdown, (15d)∑
m∈M

anm ≤ 1, ∀n ∈ N , (15e)

anm ∈ {0, 1}, ∀n ∈ N ,m ∈ M. (15f)

The inequality constraints in (15c) and (15d) are represent-
ing the Bender’s optimality and feasibility cuts, respectively,
which is associated to the former iterations. Every iteration
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TABLE I: Simulation Parameters

Parameters Values Parameters Values
Pmax 30 dBm N0 −174 dBm/Hz
f 30 GHz b 20 MHz
Coverage area 500 ∗ 500 NM area/satellite 250 km2

χ 5×105 Rmin 10 Mbps
hnm 1.53 P core

n 40 dBm
η [0, 1] hn 200 km

generates a new Benders cut, which will add to the master
problem in the form of constraint. The z − 1 Benders cuts
approximate the subproblem’s objective function from below
by hyperplanes. By getting the solution of the master problem,
a new iteration starts with the subproblem solution. The details
of BD is depicted in algorithm 1.

VI. SIMULATION RESULTS AND DISCUSSION

This section provides numerical simulation results of the
proposed resource allocation algorithm to evaluate the network
profit performance in a space-oceanic network topology. The
mmWave carrier frequency is considered from Ka-band, i.e.,
27 and 30 GHz due to the long coverage area. The bandwidth
bn of each satellite n is allocated as 20 MHz, which is further
distribute among the connected MUEs as resource blocks
to reduce interference among the network. Moreover, each
satellite utilizes the same bandwidth for the connected MUEs
to reuse the frequency spectrum. Similarly, the power of noise
to each resource block is the σ2

nm = bn/knm × N0, is the
additive white Gaussian noise (AWGN) power spectral density.
The channel gain of each satellite-MUE link is assumed LoS,
which follows the Rician distribution. The interference in
resource block allocation from the non-associated satellite is
controlled by the parameter η. The parametric values for stated
variables and other constraints are declared in the parameters
table I.

Fig. 2 shows the implemented network topology for a given
system model. The satellites are considered at the altitude of
200 km from the earth’s surface. The number of satellites
is considered n = 3, and the number of MUE in each
satellite coverage region is m = 10. Each satellite’s coverage
radius is considered 250 nautical miles (NM), which is about
463 km. The MUEs are uniformly distributed over a range of
500× 500 NM in sea waters. Each MUE is associate at most
one satellite-based on less Euclidean distance dnm.
In Fig. 3, the convergence of the BD algorithm is presented.

The value of a master problem and subproblem is Uup and
Udown respectively. As shown in Fig. 3, the value of the master
problem remains higher, and the value of the subproblem re-
main lower than the optimal value till convergence. Moreover,
the BD algorithm converges about thirty-two iterations, which
are quite good.

In the upper part of Fig. 4, we show the overall network util-
ity of all the satellites with various MUEs associations in the
network by keeping all the variable settings as previous. We
observe by increasing the number of MUEs association from
5 to 50; the overall network utility increases from 700 Mbps

Fig. 2: Oceanic-Space Network Topology

Fig. 3: Bender decomposition convergence performance

to 850 Mbps when the carrier frequency f = 30 GHz.
Similarly, this trend remains the same for the carrier frequency
f = 27 GHz with a 0.5 % increase. The one interesting pattern
of results is when the sub-6 GHz band is utilized as a carrier
frequency, which increases network utility about 9 %, due to
less pathloss.

In the lower part of Fig. 4, it represents the effect of
bandwidth on the overall network utility of all the satellites.
We keep all the variables constant and study BW’s trend from
10 MHz to 20 MHz; the incremental BW in the network
enhances the total utility by varying the number of MUEs
association from 5 to 50. When BW = 10 MHz, the network
utility increases from 370 MHz to 470 MHz with MUEs
association from 5 to 50. Similarly, when BW = 15 MHz,
the network utility increases from 530 MHz to 680 MHz.
Therefore, the broad BW spectrum can reach maximum
network utility when the carrier frequency remains the same
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Fig. 4: Network Sumrate vs Users

Fig. 5: Network Profit and χ Relation

at Ka-band, i.e., 30 GHz. Thus, our proposed algorithm can
provide high network utility in the oceanic-space network.

We present the importance of χ in different network con-
figurations. In Fig. 5, the network profit exhibits more value
when χ = 5 × 105 as compared to χ = 5 × 106. As
previously mentioned, this value depends on the fraction of
network profit per unit datarate and the expenditure per unit
transmission power. The increment in χ value directly affects
the power consumption in this scenario. Therefore, network
profits decrease when the value of χ increases.

VII. CONCLUSION

In this paper, we proposed the framework of the next-
generation network architecture of marine user’s communica-
tion. We analyzed the satellite’s MUE association and resource
allocation scheme and provided the network profit in utility
and power consumption terms. We formulated an optimization
problem of profit maximization, which was mixed integer
nonlinear programming. We solved the optimization problem

by utilizing the Bender decomposition approach, which is
the best fit for integer variables, and proposed an algorithm
for the optimal association and power resource allocation
from the satellites. Numerical results demonstrate that our
proposed framework converges to an optimal value. Moreover,
the proposed algorithm has provided good results for different
cases. We will consider network nodes’ mobility in future
work, i.e., satellites and marine users, during association and
resource allocation.
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