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ABSTRACT Federated Learning (FL) relies on on-device training to avoid the migration of devices’ data
to a centralized server to address privacy leakage. Moreover, FL is feasible for scenarios (e.g., autonomous
cars) where an enormous amount of data is generated every day. Transferring only local model updates in
the case of FL is highly communication-efficient compared to transferring all data in the case of centralized
machine learning (ML). Although FL offers many advantages, it also has some challenges. A malicious
aggregation server can infer device information via local model updates. Another downside of FL is
the centralized aggregation server that can malfunction due to an attack or physical damage. To address
these issues, we propose a novel Structured Transparency empowered cross-silo Federated Learning on
the Blockchain (ST-BFL) framework. In ST-BFL, homomorphic encryption, FL-aggregators, FL-verifiers,
and smart contract are employed, which satisfy various structured transparency components, such as input
privacy, output privacy, output verification, and flow governance. We present the framework architecture,
algorithms, and sequence diagram of our ST-BFL framework to show how different entities interact in ST-
BFL for the FL process. We also present a simplified class diagram of ST-BFL’s smart contract for an FL
task. Finally, we perform a simulation to analyze our framework from the perspective of aggregation time,
accuracy, and storage size. The qualitative and quantitative evaluation shows that ST-BFL has the same
accuracy as traditional FL. However, ST-BFL provides input privacy, output privacy, input verification,
output verification, and flow governance at the expense of relatively higher computation and communication
costs than traditional FL.

INDEX TERMS Blockchain, Ethereum, federated learning, flow governance, homomorphic encryption,
input privacy, input verification, output privacy, output verification, smart contract, structured transparency.

I. INTRODUCTION

The rapid proliferation and advances in communication and
information technologies generate data at diverse variety,
high velocity and tremendous volume [1]. To fully reap the
data for various applications, one can feed the generated data
to Machine Learning (ML) algorithms [2], [3]. However,
this involves privacy-transparency tradeoffs, such as the
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privacy dilemma and the transparency dilemma [4]. Privacy
dilemma refers to whether or not to disclose information
for accomplishing a certain goal. Disclosing information
may lead to potential harm (such as copy problem)
by malicious actors [4]. A transparency dilemma occurs
when someone has to make a decision without access to
complete information about the decision. In other words,
a transparency dilemma occurs when someone is forced to
make a critical decision under limited knowledge of the
predicament under consideration. Providing more access to
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the data for making a decision may lead to privacy leakage.
Therefore, a tradeoff must be made between transparency
(information disclosing) and privacy. Private and secure ML
schemes aim to solve the privacy dilemma, copy problem,
and transparency dilemma for artificial intelligence-based
applications. Numerous techniques related to secure and
private-Al, have been developed to overcome these privacy-
transparency trade-offs. One such technique is Federated
Learning.

Federated learning (FL) [5]-[9] is a collaborative learning
paradigm where an ML model is learned over geographically
dispersed devices without sending devices’ raw data to the
centralized server for training. The privacy of the raw data
remains intact up to a certain level, and devices only send
the local learning model updates to the central server, which
are aggregated to yield the global model. FL has brought a
revolution in the scope and volume of artificial intelligence-
based applications and services that can be enabled using
ML and deep learning. However, there are still many
challenges to enabling privacy-preserving and secure FL
such as:

o Single-point-of-failure: The typical FL process involves

a single central server as an aggregator that can suffer
from a single-pint-of-failure issue due to security attack
or physical damage.

o Poisoning attacks: Malicious devices may send poi-
soned local model updates to the aggregation server that
will lead to high global convergence time or abort the
learning process.

o Inference attacks: FL itself is not a complete data privacy
solution. An adversary may exploit the local model
updates of devices for performing inference attacks.
Additionally, the aggregation server itself can also infer
the devices’ information from the local learning model
updates.

o Aggregation attacks: The aggregation server may be
attacked by a malicious adversary to compute the
aggregated global model incorrectly. This results in an
inaccurate global model. and will prolong the FL global
model convergence time.

o Auditability: Since the FL process can be subject to
poisoning attacks, inference attacks, and other malicious
attempts by adversaries. To improve the security of the
FL process, an audit of the FL process is necessary.
Auditability of the FL process can be achieved by
recording all the meta-data related to local model
updates, global model aggregation process, as well as
accessibility information in a secure log.

Motivated by the above challenges in FL, we design a
novel framework, entitled, Structured Transparency empow-
ered cross-silo Federated Learning on the Blockchain (ST-
BFL) framework. Structured transparency [4], [10] is
a framework to solve privacy-transparency tradeoffs for
information flows systematically. Structured transparency
has five components, namely input privacy, output privacy,
input verification, output verification, and flow governance.
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Structured transparency allows us to make effective use
of information by preventing potential misuse. Structured
transparency ensures input data autonomy by ensuring input
privacy, the computational process’ integrity, and transparent-
auditable flow governance. In this paper, We analyze and
empower FL in the context of structured transparency. In this
regard, the ST-BFL framework employs several techniques
to satisfy different components of structured transparency.
We believe that this study is the first to empower FL using
structured transparency.
Our contributions are summarized as follows:

o We present a structured transparency perspective on
federated learning by considering the federated learning
process as ’information flow’ in a structured trans-
parency context.

o We propose the ST-BFL framework that employs homo-
morphic encryption at the client layer, FL-aggregation
at the FL-aggregation layer, FL-verification at the
FL-verification layer, and smart contract & IPFS at
the distributed decentralized layer to satisfy different
components of structured transparency.

o We perform a quantitative and qualitative evaluation of
our framework. It is shown that ST-BFL has the same
accuracy as traditional FL. However, ST-BFL provides
more benefits, such as input privacy, output privacy,
output verification, and flow governance.

The rest of the paper is organized as follows: Section II
analyzes the literature review of blockchain enabled FL.
Section III discuss the preliminaries related to our work.
Section IV presents the proposed framework. Section V
discuss the simulation setup, quantitative evaluation, and
qualitative evaluation of our proposed framework. Section VI
concludes our paper.

Il. RELATED WORK

Few works [7], [11], [12] considered blockchain for FL to
enable robust learning by avoiding the use of a centralized
aggregation server. Kim et al. [11] proposed BlockFL, which
is blockchain-based FL architecture with an on-device aggre-
gation mechanism. The local model updates are conducted
by user devices on their respective local data samples. The
local model updates are then sent to miners, who then
accumulate them to form a new block for the current global
iteration. The formed block is propagated to the network
for consensus and added to an immutable ledger. The main
downside of the design is that the aggregation of local models
to obtain a global model is performed on-device (using the
FedAvg algorithm [13]) by each participating device. The
on-device aggregation is infeasible due to storage, latency,
and computing cost for computing the global model from a
block of local models with millions or billions of parameters.
Mobile devices are heterogeneous in computing, latency, and
storage capabilities. Expecting every device to be able to do
on-device aggregation is impractical. Another issue is the
on-chain storage of local models. The block size does not
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allow on-chain storage of models having a model size in
megabytes (MBs). Moreover, they assume that no straggling
devices are participating in the FL process, which is
absurd.

Majeed and Hong [7] proposed a blockchain-based FL
scheme called FLchain, which supports learning of multiple
global models for different tasks by leveraging channels
in a distributed ledger. Each global-model learning task is
allocated a separate channel. They introduced the “Global
Model State Trie”’, similar to “Account State Trie” in
Ethereum, to store aggregated models in a Merkle tree.
However, the drawback of the proposed scheme is the lack of
any validation mechanism for the computed global model by
miners and the lack of any incentive mechanism. Moreover,
this scheme also has an on-chain storage issue. Li et al. [12]
proposed BFLC, a blockchain-enabled federated learning
framework with committee consensus. This framework uses
blockchain for local model exchange and also has on-
chain global model storage. The novel committee consensus
requires fewer computing resources and is robust to malicious
attacks such as poisoning attacks, but the downside of
their approach is that each FL task requires an independent
dedicated blockchain.

Federated learning is not a fully-privacy preserving
scheme. Researchers use homomorphic encryption with fed-
erated learning to mitigate membership inference attacks by
the central server. A fully homomorphic encryption scheme
was first presented by Gentry [14]. A comprehensive survey
on homomorphic encryption is presented by Acar et al. [15].
Zhang et al. [16] proposed BatchCrypt, a framework for
communication efficient homomorphic encryption for cross-
silo FL. However, BatchCrypt has significant computation
overhead for pre-processing and post-processing. BatchCrypt
encodes quantized gradients in a batch in the form of a
single long integer. This reduces the computation required for
homomorphic encryption and decryption, but pre-processing
and post-processing overhead at the local devices restrains
BatchCrypt usage. Moreover, asymmetric quantization and
de-quantization procedures involved may reduce global
accuracy [17].

The works in [7], [11], [12] considered blockchain and FL.
However, they did not effectively consider privacy preserva-
tion and global model verification at the aggregation stage.
Meanwhile, the work in [16] studied communication-efficient
privacy preservation for FL only. By contrast, our work
considers privacy preservation, global model verification at
the aggregation stage, removal of single-point of failure of the
central aggregation server, off-chain aggregation, off-chain
storage, and effective flow governance.

Ill. PRELIMINARIES
This section gives a brief introduction to the technologies
and platforms which helped in designing the framework
architecture of ST-BFL or helped in the implementation and
evaluation of ST-BFL.

155636

A. ETHEREUM

Ethereum [18] is a popular blockchain platform for deploy-
ing decentralized applications. Ethereum is the protocol
envisioned and developed by Vitalik Buterin in 2013 and
2015, respectively. Ethereum is widely known as the
“World Computer” and provides a universal programmable
blockchain ecosystem. Ethereum runs decentralized applica-
tions (DApps) by executing smart contracts on Ethereum’s
distributed network. Each participant in the network has a
unique private key associated with their unique Ethereum
Address (EA) for signing transactions [19]. The private key
is stored in the Ethereum Wallet.

B. SMART CONTRACT

The concept of smart contract was devised by
Szabo in [20], [21]. Smart contract’s original idea was to
embed contractual clauses using hardware and software so
that breaching the contract is effectively detrimental to the
breaching party in the agreement [22]. The introduction
of smart contracts in the blockchain is considered a
breakthrough for the implementation of a broad scope
of applications [23]. Smart contracts on Ethereum [24]
are usually written in a high-level programming language
known as Solidity. Smart contracts are immutable and,
once deployed, cannot be changed. The execution of smart
contracts on Ethereum consumes gas. Each smart contract is
allotted a unique contract account address for deployment on
Ethereum. The smart contract is executed on each Ethereum
full node and the state variables of the smart contract are
stored in account storage trie associated with the contract
account on every full node [25].

C. SMART CONTRACT STORAGE

Each smart contract is assigned permanent storage by the
Ethereum Virtual Machine (EVM) to maintain its state. Smart
contract storage can extend up to an addressable space of 22°°
slots, while each slot contains 32-bytes. A smart contract can
read and write from any location of its persistent storage.
The state of a smart contract is determined by contract-
level variables, also known as ‘“‘state variables” [26]. The
cardinality and structure of state variables remain the same
throughout the smart contract life cycle. However, the content
of state variables may be updated through transactions [27].
The state variables are stored as key/value pairs mapping
32-byte keys to 32-byte values. The smart contract also
uses 256-bit-addressable space called memory for transient
storage of intermediate values during computations.

D. SOLIDITY

Solidity is a high-level Turing-complete general-purpose
programming language for writing smart contracts. Solidity
is an object-oriented programming-language that supports
events, modifiers, multiple inheritance, and control struc-
tures. Solidity has its compiler to generate the bytecode
(a low-level language) that runs on the Ethereum Virtual
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Machine (EVM). Solidity is the official and most popular
smart-contract language on Ethereum. In Solidity, the type
of each variable needs to be explicitly specified, so it is a
statically typed language [28].

E. REMIX IDE

Remix [29] is an integrated development environment (IDE),
which allows to write, compile, debug, test, deploy and
run Solidity smart contracts from the ease of an online
web browser. It has a source code editor with an auto-
complete option and a file manager. Once a smart contract is
compiled in Remix, the bytecode and the application binary
interface (ABI) are available to download. A JavaScript VM
is provided to interact with the smart contract in the default
mode. Five accounts are provided, each with a 3,000,000 gas
limit.

F. TRUFFLE

Truffle [30] is the command-line interface (CLI) frame-
work for coding, compiling, building, migrating, deploying,
and testing Ethereum decentralized applications (DApps).
Though decentralized applications can be developed without
Truffle, Truffle accelerates the development process. Truffle
allows seamless integration of web technologies with smart
contracts to produce complete DApps as an end-product.
Compiling of smart contracts on truffle results in bytecode,
which is deployed on Ethereum as a smart contract. Truffle
can interact with Geth, Parity, and Ganache seamlessly.

G. GANACHE

Ganache [31], [32] is a tool to create a local private
ethereum blockchain for development and testing purposes.
Ganache GUI has an interface to list available accounts,
transactions, deployed smart contracts, and emitted events.
From Ganache, a blockchain developer can also access a
particular transaction’s data as well as the storage of a smart
contract. Blockchain developers use Ganache for prototyping
in the development environment before deploying to the
mainnet or testnets. The read/write transactions can be
submitted to Ganache through a JSON RPC API server.
As soon as transactions are received, Ganache processes them
instantly and updates the corresponding state. Therefore,
Ganache is 10 times faster than Ethereum testnets.

H. InterPlanetary FILE SYSTEM

InterPlanetary File System (IPFS) [33] is a open-source peer-
to-peer universal content-addressed file storage and sharing
system. IPFS platform [34] is a hypermedia protocol, which
assists the web in becoming safer, faster, decentralized, and
open. IPFS stores the file in an immutable and persistent
way. However, versioning is supported. IPFS assigns a
global unique cryptographic hash for each file stored on
it. The files having exactly the same content have the
same digital fingerprint (hash), thus reducing redundancy
in the network. This IPFS hash can be used to retrieve
the immutable file later. Asymmetric Cryptography can be
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applied to encrypt/decrypt files for secure sharing. Since
blockchains usually have limited storage capacity, IPFS has
become popular for high-throughput large data storage for
decentralized applications [35]. IPFS uses a distributed hash
table (DHT) to track its data. The IPFS hash of a file
is stored on Ethereum smart contracts link Ethereum and
IPFS, as Ethereum itself does not provide any mechanism to
connect to the external world.

I. HOMOMORPHIC ENCRYPTION

Homomorphic Encryption [36] is a way to perform computa-
tion on encrypted data such that the results are also encrypted.
For an encryption scheme (P, C, K, E, D), where the plain
texts are P and C, E is the encryption algorithm, D is the
decryption algorithm, and K is the keyspace. We assume that
the plain texts belong to group (P, ¢), while the ciphertext
belong to group (C, o). The ecryption maps plain text
P € (P, ) to ciphertext C € (C, o) such that E; : P —
C where k € K is secret key. If

Ex(a) o Ex(b) = Ex(a0b), Va,beP, Yk e K. (1)

then the encryption scheme Ej is homomorphic scheme [37].

Fully Homomorphic Encryption (FHE) supports the
addition of ciphertexts, as well as multiplication with a
scalar [37], [38].

Ex(s.a) = s.Ex(a), VYaeP,VseRy, VkeK. (2)

Homomorphic Encryption schemes are classified into
two main categories based on how the involved parties
encrypt their data. These are Single-Key Homomorphic
Encryption (SKHE) and Multi-key Homomorphic Encryp-
tion (MKHE). In SKHE, there is a single pair of secret-public
keys [39]. The encryption and evaluation can be generally
performed using the public key. However, the decryption
can only be performed using the secret key. The typical
cross-silo FL schemes involving SKHE rely on the honesty
of the key-generator who holds the secret key. To address
these trust issues, MKHE is the solution. In MKHE, each
party encrypts their own plain text using their own different
secret key. MKHE allows operations on ciphertext using
the joint public context [40]. The resultant ciphertext is
then jointly decrypted by the involved parties. In this way,
no party can decrypt the other party’s individual original
ciphertext. However, MKHE schemes are still in infancy.
FL requires a homomorphic scheme (SHKE or MKHE) that
supports operations such as multiplication with unencrypted
floats (scalar) and the addition of encrypted signed floats.
As the practical implementation of MKHE is not widespread
due to lack of effective and feasible libraries, we have used
CKKS in ST-BFL, which is an SKHE and a public key
encryption scheme [41].

J. CROSS-SILO FEDERATED LEARNING

Cross-silo FL allows few organizations to collaboratively
train a ML model. In this work, we consider a collaboratively
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TABLE 1. Summary of notations.

Symbols Description

FL_Task; ftn FL task

f index for FL task

Of set of organizations/Silos for F'L_Task ¢
N cardinality of O

k index for organization/Silos

t global epoch

a index for FL-Aggregators

v index for FL-verifiers

TPy task publisher for F'L_Task

FL — Trainersy set of FL trainers for F'L_Task ¢

k¢, FL-Trainer for F'L_Tasky

FL — Trainery, ¢

ASy Aggregation Scheme for F'L_Task ¢
MA I Model Architecture for F'L_T'asky
IMW;g Initial Model Weights for F'L_T'ask f
SKHE ;’ {l Private context of SKHE for global iteration ¢ and
’ FL_Tasky
SKH E}D ?b Public context of SKHE for global iteration ¢ and
’ FL_Tasky
ELMWy ¢+ Encrypted Local Model Weights of k;; FL-
trainer at global iteration t of F'L_Task f
EGMy 4 Encrypted Global Model at global iteration ¢ of
FL_Tasky
DGMy ¢ Decrypted Global Model at global iteration ¢ of
FL _Tasky
NVierify Number of verifiers who voted that the FL-
aggregator has aggregated correctly
NVieitect, f,t Number of verifiers assigned at global iteration ¢

of F'IL_Tasky

Number of verifiers required to vote in sup-
port of FL-aggregator at global iteration ¢ of
FL_Tasky to confirm epoch

N‘/th'reshold,f,t

trained NN (deep Dense Neural Network (DNN) or Convo-
lution Neural Network (CNN)) in a federated manner using
the supervised learning approach from the distributed labeled
datasets available to each organization. Formally, consider a
cross-silo FL task FL_Tasky with N organizations, the set of
organizations is denoted as O = {01, O3, ..., Oy}. Each
organization has its own dataset Dy. Where, ny = |Dy| are
the total number of samples in Dy, then n = ), Dy are the
total samples for all the datasets Dy, k € K. The NN has
C classes for compact Euclidean feature space X and label
space ) = [C], where [C] = {1, 2, ..., C}. The goal of FL
for NN is to minimize the overall loss function [42]

minf(@) = Y “Fi(@).

keO
where
1
Fr@) = — Y fr(®). 3)
ni
reDy
155638

Here, the local loss of NN is denoted by Fy. f;-(w) denotes
the multiclass cross-entropy loss on a data point {x, y} for
one-hot-encoded labels and is defined as [43]

c
[(@) == L=y logpy(x, ®). “
g=1
Here, if @ is the weight matrix of the NN, then p,(x, w)
gives the probability that x € X belongs to class q.
At global iteration ¢ + 1, the local model weights are
updated by organization k as (note: we skipped formulation
for local iterations here for simplicity)

wf_H <~ w; —ngk,Vk, where g =VF;(w;). (5

At global iteration ¢ + 1, the global model weights are
updated as [44]

W] < 7(0t+1. ( )
keO

For o} = 7, (6) becomes

k
@it < )o@, (7)
keO

where oy, is the weight scaling factor for organization k.

IV. PROPOSED FRAMEWORK

In this section, we describe our proposed ST-BFL frame-
work that is a structured transparency empowered cross-
silo federated learning on the blockchain. ST-BFL utilizes
homomorphic encryption, FL-aggregation, FL-verification,
and smart contract to empower federated learning with
structured transparency.

Fig. 1 shows the layered architecture of ST-BFL that
consists of four layers: the client layer, the distributed
decentralized layer, the FL-aggregation layer, and the
FL-verification layer. Additionally, the framework has a
blockchain oracle service for each FL-task, and the ST-BFL
market service manager. Each FL_Taskys has its own client
layer. The client layer consists of FL trainers (silos) taking
partin the FL process for a FL_Tasky, and a FL-task publisher
TPs. The k™ FL trainer is denoted by FL — Trainery g, where
k € [0, N] and N denotes total number of cross-silo trainers
in FL_Tasky. The summary of notations is given in Table 1.
Each FL — Trainery ; has the dataset Dy . The distributed
decentralized layer consists of the Ethereum blockchain
network, and a decentralized file storage system known as
IPFS. The IPFS and Ethereum blockchain are formed by
a network of nodes distributed over the globe. Moreover,
these nodes are not controlled by a single entity, and thus
we term this layer as distributed decentralized layer. A smart
contract SMy orchestrating the FL process is deployed on
the Ethereum blockchain network for each FL_Tasks by the
corresponding FL-task publisher TPr. The FL-aggregation
layer consists of servers SA,, where a € [0,A], which
offers the aggregation service for FL tasks. A is the total
number of FL-aggregator servers registered in the cross-silo
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FIGURE 1. Layered architecture of ST-BFL framework.

FL market. The FL-verification layer consists of servers SV,
where v € [0, V], which offer verification service for FL
tasks, i.e., they will verify that the FL-aggregator assigned
to an FL-task has performed the aggregation in accordance
with the corresponding aggregation scheme. V is the total
number of FL-verifiers servers registered in the cross-silo
FL market.

The FL-aggregation layer and FL-verification layer are
considered as a part of the ST-BFL marketplace. The
ST-BFL market service manager selects and manages the
FL-aggregators and FL-verifiers in the FL-aggregation layer
and FL-verification layer. The FL-task publisher registers the
FL-task to the ST-BFL market service manager. The FL-
aggregator and FL-verifiers for the aggregation process at
each global epoch are selected and assigned by the ST-BFL
market service manager for the FL task. A blockchain oracle
service [45] for the FL-task is also deployed to interact with
the ST-BFL market service manager and the corresponding
smart contract deployed on the Ethereum blockchain. The
mapping of structured transparency components to our
proposed framework is explained in Table 2. The related
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benefits to federated learning in ST-BFL are also listed. Next,
we discuss the challenges related to the implementation of our
framework.

o Transaction data size: In most of the popular blockchain
platforms, there is an upper limit to the transaction’s data
size supported. Ethereum has a transaction size upper
limit of 128KB. Also, storage of the whole model on the
ethereum network is expensive, So, we stored the model
on IPFS and instead stored the hash on Ethereum smart
contract.

o IPFS public accessibility: The files on IPFS are publicly
accessible provided you have some identifier for the
file. To overcome this privacy issue, we can employ
public-key cryptography to encrypt the privacy-sensitive
content such as HE public contexts, decrypted global
models. The encrypted contents of the file can only be
decrypted using the corresponding private key generated
for the corresponding global iteration. The private key
can only be shared with relevant entities. However, for
simplicity, we skip this cryptographic process in our
work.
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TABLE 2. Structured transparency mapping to ST-BFL framework, and related benefits to FL.

Structured Description How structured transparency component is Benefit to FL in ST-
Transparency implemented in ST-BFL framework ? BFL framework
Component
Input Privacy The input to information flow Input privacy is achieved by homomorphic e Prevents inference
does not leak privacy them- encryption. attacks on  local
selves. All the local models are encrypted using models.
SKHE.
The task publisher holds the SKHE secret
key, but the smart contract does not allow
the task publisher to access the local models
directly, thus preserving privacy from task
publisher too.
Output Privacy The output of information Output privacy is achieved as the aggregation o Prevents
flow does not leak privacy. process results in a homomorphic encryption unauthorized access
global model. to the global model.

The global model can only be decrypted by
the task publisher.

Input Verification

The inputs to the informa-
tion flow are authenticated
and correct.

Input Verification is not needed in cross-silo
FL as we consider FL Trainers to be honest
Input Privacy and Input Verification is diffi-
cult to achieve simultaneously under current
research.

Output
Verification

The output of the information
flow is processed and gener-
ated according to the policy.

The output of the ST-BFL framework is gen-
erated by the corresponding FL-aggregator
for each epoch.

The output verification is achieved through
FL-verifiers which vote on whether the FL-
aggregator has aggregated the local models
correctly.

« Prevents aggregation
attacks when com-
puting global model.

Flow Governance

The Flow Governance deals
with the process of how the
flow is orchestrated.

who is authorized to change
the flow process?

Flow Governance is maintained initially by
the FL task publisher.

Once the smart contract for FL task is de-
ployed, Flow Governance is maintained by
the ST-BFL market and smart contract.

+ Remove single-
point-of-failure  of
central server.

« Provides auditability.

o Prevent unauthorized

e How the flow <can be
changed.

access to local and
global models.

o Poisoning attacks: Since the local models are encrypted
using homomorphic encryption, it is difficult to verify

the local models for poisoning attacks.
To realize ST-BFL, we made the following assumptions:

first, since the FL-verifiers are randomly selected from the
market based on reputation and capability, they have to
verify the FL-aggregator in a limited time. It is assumed that
they do not collude with the FL-aggregator. Second, it is
assumed that the majority of FL-verifiers are honest, i.e., they
perform the task as per specifications of FL information flow.
Otherwise, we will get into recursive oversight problem [4],
which is difficult to resolve. Third, in this framework, we only
consider the cross-silo FL. In the cross-silo FL scheme, there
is no incentive to send the poisonous local models by the
FL-trainers as the trainers do not get any reward. Instead,
their incentive is to jointly train the global model with high
accuracy for deployment in their business. So we assume
that there are no poisoning attacks by the trainers. Fourth,
it is assumed that FL-aggregators and FL-verifiers do not
leak the privacy of local models of an FL-trainer to FL-task
publisher or other FL-trainers. Since for ST-BFL, the FL-task
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publisher or other FL-trainers can decrypt the local model.
This problem can be resolved by using MKHE. Fifth, the
cross-silo FL-Trainers and FL-task publisher have reliable
and efficient communication connections as they are part
of cross-silo federated learning. Sixth, the ST-BFL market
service manager is reliable and secure.

Now, we discuss the sequence of the proposed ST-BFL
framework as shown in Fig. 2. The sequence steps for ST-
BFL are below:

o Step 1: A FL-Task publisher TPy deploy the new
smart contract on Ethereum for FL_Tasky. The agreed-
upon aggregation scheme ASy, model architecture MAy,
unencrypted initial global weights IMW; are uploaded
to IPFS and logged into the smart contract by the
Cross-silo-FL-task publisher. This step is summarized
in procedure Initialize_FL_Task() of Algorithm 1.

o Step 2: For each global epoch ¢ of TPy, the Task
publisher TPy generates a new SKHE private context
SKHEﬁ 7 and send the associated public context to the
FL trainers FL — Trainersy.Both SKHE public context
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Algorithm 1 FL-Task Publisher TPy

Algorithm 2 FL — Trainery g

1
2
3
4
S:
6
7
8
9

10:

11:
12:
13:
14:

15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:

: procedure INiTIALIZE_FL_TAsk(k)

Deploy Smart Contract SMy
Upload Aggregation Scheme ASy — IPFS
uploadAggregationSchemeTx() — SMy
Upload Model Architecture MAy —IPFS
uploadModelArchitectureTx() — SMy
Upload Initial Model Weights IMW; — IPFS
uploadinitialModelWeightsTx() — SMy
Register SMy to ST-BFL market through ST-BFL
market manager service
The ST-BFL market manager service will deploy a
corresponding blockchain oracle for the FL-task
Make Payment to ST-BFL market
end procedure
procedure TP_InimiaLize_FL_Task_EpocH(f, t)
Generate SKHE private and public context
(SKHEf", SKHEP"”)
Upload SKHE public context SKHE f “b _s IPFS
uploadSKHEpublicContextTx(f,t) — SMy
Send SKHE public context SKHEP“” — FL-
Trainersy,
end procedure
procedure DecrypT_GLOBAL_MODEL(f, t)
downloadEncryptedGlobalModelTx(f,t) — SMy
Download encrypted global model EGMy ; < IPFS
Decrypt EGM;y , to decrypted global model DGM; ;
Upload Decrypted Global Model DGMy ; — IPFS
uploadDecryptedGlobalModelTx(f.t) — SMy
end procedure

SKHEP “b and SKHE private context SKHE;) " are
uploaded to the IPFS and logged to the smart contract.
However, the private context can only be accessed by
the task publisher through the smart contract. The access
to the public context of SKHE is provided to different
entities as the FL flow progress as per policy by the
smart contract. This step is summarized in procedure
TP_Initialize_FL_Task_Epoch(k, t) of Algorithm 1.
Step 3: For each global epoch ¢, each FL trainer
FL — Trainery trains the local model LM s ; using their
local datasets Dy y. If this is the first global epoch,
then the local models are trained using Initial Model
Weights IMW, otherwise, the decrypted global model
of previous global iteration DGM s ;1 is used. The
local models are encrypted using the public context
of SKHE scheme SKHEP b for the global epoch,
and then uploaded to IPFS, afterward IPFS-hash and
other meta-data are added to the transaction. The
transaction is submitted to the smart contract on the
blockchain ethereum) network. This step is summarized
in procedure FL_trainer_Task(t) of Algorithm 2.

Step 4: Meanwhile an FL-aggregator SAy ; and some FL-
verifiers SV, are randomly selected from the ST-BFL
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1
2
3:
4
5

10:
11:
12:

14:

MW

. procedure FL_TRAINER_TAask(k, f, 1)

ift == 1 then

downloadInitialModelWeightsTx() — SMy
Download Initial Model Weights IMW; <« IPFS
Train Local model LMy s, on dataset Dy s using

else
downloadDecryptedGlobalModelTx(f,t-1)  —
SMy
Download Decrypted Global Mode DGMy ;1
<~ IPFS
Train Local model LMy, s ; on dataset Dy s using
DGMy
end if
Encrypt Local model LMy s, by SKHEF*
Upload Encrypted Local Model Weights ELMW ¢
— IPFS
uploadLocalModelWeightsTx(t,
ipfsHash(ELMWy ¢ 1)) — SMy
end procedure

Algorithm 3 : Smart Contract SMy

1
2
3
4:
5
6

7:
8:
9:
10:
11:
12:
13:

: procedure SM_FL_Task(f, 1)

Set votes = 0
Determine NV, e f,; using blockchain oracle
Determine NV eshoia . using blockchain oracle
Select FL-aggregator SA ; using blockchain oracle
Select FL-verifiers SV;r, € SVi; ISVrl =
NVielect £+ using blockchain oracle
Collect votes
if votes >= NVipreshoia f,r then
Confirm EGM; ; = EGM; ; ,
else if votes < NVipresnota f,: then
Goto line 2 and repeat
end if
end procedure

market based on reputation and capability by the
ST-BFL market service manager. The meta-data of the
selected FL-aggregator SAys , and FL-verifiers SVy ; is
sent to the SMy through the corresponding blockchain
oracle. The number of selected FL-verifiers depends
upon the payment to market by Task publisher TPy. This
number is defined by a threshold Tie.cr). The detailed
procedure for selecting FL-aggregator and FL-verifiers
is out of the scope of this work.

Step 5: After waiting for some pre-set time, The
selected FL-aggregator SAy , and FL-verifiers SV; ¢, €
SVr, downloads the aggregation scheme ASy, model
architecture MAy, the public context of SKHE scheme
SKHE]{D b and all corresponding encrypted local models
ELMW; s , for the current global epoch ¢. The encrypted
local models are aggregated by FL-aggregator and
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FL-Task_publisher
TPs

s,

ASs, MAf, IMWg

FL-Trainer ¢

3>

FL-Aggregator
SAs¢

FL-Verifier Smart Contract
SVif SM;

N :IPFS ‘ @

.
LupIoadAggregationSchemeTx, uploadModelArchitectureTx, uploadinitialModelWeightsTx

TP_INITIALIZE_FL_TASK_EPOCH(f,t) //

\L uploadDecryptedGlobalModel Tx(f t) :

TP_INIT;IALIZE_FL_TASK_EP@CH(f,t) :
" SKHE Pub ' :
. : > :
> :
LupIoadSKHEpublicContexth :
>
SKHE; 7P :
FL_TRAINER_TASK(kf,t) Train LWM.k,f.t on Dy rand Encrypt using SKHEmPU'b
ELWM, ¢4 :
uploadLocalModelWeightsTx(t, f, ipfs_hash(ELWM y ¢ 1)) :
: - - - >
SM_FL_TASK(f,t);0:6 SM_FL_TASK(ft):0:6
EGM : :
FL_Aggregate(f,t) fta : : :
L uploadGlobalModelWeightsTx()
>
FL_VERIFY(f.) FL_VERIFY(ft) :
SM_FL_TASK(f,t);7:14 SM_FL_TASK(f,t);7:14
DECRYPT_GLOBAL_MODEL(f.1) : dgwnloadEncryptedGIongModeITx(f,t) \
. L
: EGM, : :
‘- : :
TN R : :
: Decrypt EGM ; 1, DGM  using SKHE; P :
DGM, :
>/
>»:

Repeat untill reach desired accuracy or MaxEpochs

FIGURE 2. Sequence diagram of interaction between entities in ST-BFL framework.

FL-verifiers using the public context of homomorphic
scheme SKHE;? ’;h . The FL-aggregator uploads the
aggregated global model to the IPFS and submits a
transaction. The FL-verifiers also aggregate the model
and verifies that the model submitted by FL-aggregator
is correct. Since the SKHE, and aggregation scheme
is deterministic, both FL-aggregator and FL-verifiers
should be able to generate the same aggregated global
model. If NVep NVseleer * 2/3 FL-verifiers
vote that the FL-aggregator has aggregated according
to the corresponding aggregation scheme, then the

>
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FL-aggregator model is termed as valid. Otherwise,
step 4 is again performed by the SMy and blockchain
oracle. This ensures that the aggregation is performed as
per the FL aggregation scheme ASy.

Step 6: Once the valid encrypted global model EGMy ;
for global epoch ¢ is available, it is decrypted by the
Cross-silo-FL-task publisher to decrypted global model
DGMgy ;. The accuracy is measured on the test dataset
and logged into the smart contract. The decrypted global
model is then used for the training of the next global
epoch by FL-trainers.
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Algorithm 4 FL-Aggregator SAy ;

1: procedure FL._AGGREGATION(f ,t)

2 downloadAggregationSchemeTx(f) — SMy

3 Download Aggregation Scheme ASy < IPFS

4: downloadModelArchitectureTx(f) — SMy

5: Download Model Architecture MAs < IPFS

6 downloadSKHEpublicContextTx(f,t) — SMy

7 Download SKHE public context SKHE;T ub < IPFS
8 downloadLocalModelsTx(f,t) — SMy

9: Download Local Models ELMWj ¢ ;, Yk < IPFS
10 Aggregate to Encrypted Global Model Weights

EGMy ; 4 using ASy, MAy, and SKHEﬁ‘;b

11: Upload Global Model Weights EGMy ; , — IPFS
12: uploadGlobalModelWeightsTx() to SMy
13: end procedure

Algorithm 5 FL-Verifier SV ¢ ;

1: procedure FL_VERIFICATION(f ,t)

2 downloadAggregationSchemeTx(f) — SMy

3 Download Aggregation Scheme ASy < IPFS

4: downloadModelArchitectureTx(f) — SMy

5: Download Model Architecture MAy < IPFS

6 downloadSKHEpublicContextTx(f;t) — SMy

7 Download SKHE public context SKHE fl-f Lt‘b < IPFS
8 downloadLocalModelsTx(f,t) — SMy

9: Download Local Models ELMW; ¢ ;, Yk < IPFS
10: Aggregate to Encrypted Global Model-verifier

EGMV; x; using ASy, MAy, and SKHE"

1:if ipfsHash(EGMViy,) == ipfsHash(EGMy ; 4)
then

12: votes = +1 — SMy

13: end if

14: end procedure

The process then continues from steps 2-6 until some
threshold in the context of accuracy or number of epochs
is reached. It is necessary to mention that since the local
models in ST-BFL are encrypted using the same private key
by all FL-trainers, the smart contract is designed in such
a way that it denies access to IPFS-hash of the encrypted
local model to FL-trainers other than its generator. Only
assigned FL-aggregator, FL-verifiers, and the respective FL-
trainer (owner/generator) can access the IPFS-hash of the
local model from the smart contract. Even TPy cannot access
the IPFS-hash of encrypted local models from the smart
contract to preserve privacy.

A simplified UML diagram for the smart contract SMy
is shown in Fig. 6 in Appendix. The transactions to smart
contract behave differently based on the address of the caller
and so provide different data to different callers in return, thus
this property of smart contract preserves the output privacy of
the flow according to access rules set in the smart contract.
Moreover, the events emitted by the smart contract also do
not leak sensitive information.
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V. EVALUATION

A. SIMULATION SETUP

We perform simulations on Ubuntu 20.04 with Intel i3@
3.90 GHz and 16 GB RAM.

1) PYTORCH
We used PyTorch [46] for training and aggregation of
state_dicts [47] of local models to global models for each
global epoch.

2) INPUT PRIVACY AND HE

Ideally, for fully secure input privacy, we should have
used the multi-key homomorphic encryption scheme for
better privacy. However, we could not find any feasible
library for a multi-key homomorphic encryption scheme
for FL as the multi-key homomorphic encryption schemes
and corresponding libraries are still in infancy and are at
the research phase. So we use a single-key homomorphic
encryption tool called TenSEAL. TenSEAL is developed by
OpenMined. TenSEAL [48] is an SKHE library that allows
encrypting a vector of signed floats to a single encrypted
vector ciphertext using CKKS [49] under the hood.

3) REMIX IDE
We code, debug, compiled our smart contract for TPr on
REMIX IDE.

4) BLOCKCHAIN, GANACHE, AND TRUFFLE
We set up a local Ethereum blockchain using Ganache.

A solidity smart contract is deployed using Truffle by the
FL-task publisher TPy.

5) IPFS

A local IPFS client is set up using the ““ipfs init” command,
while the IPFS client is run using the ‘“ipfs daemon”
command.

6) DATASET

We use the MNIST and fashion-MNIST datasets for our
simulation. Both datasets consist of 60000 training images
and 10000 test images each. For the MNIST dataset,
we sorted the dataset by image labels, then we assigned the
shard of 20000 images to each of the FL-trainer with N = 3.
The fashion-MNIST dataset is assigned to FL-trainers with
N = 3 according to Table 3.

7) MODEL ARCHITECTURE
The DNN architecture for MNIST is shown in Table 4.
The model consists of three fully connected layers. The
first and second fully connected layers have relu activation
with a dropout of p = 0.2. The third connected layer has
LogSoftmax activation.

The Relu [50] activation for a scalar x is given by [51]

0 0
mwz{ ¥ = )
X

x > 0.
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TABLE 3. Distribution of Fashion-MNIST for N = 3.

Numeric-Label FL-trainer-1 FL-trainer-2 FL-trainer-3

0 5600 200 200
1 5600 200 200
2 5600 200 200
3 200 5600 200
4 200 5600 200
5 200 5600 200
6 200 200 5600
7 200 200 5600
8 200 200 5600
9 2000 2000 2000

TABLE 4. Dense-NN architecture for MNIST.

Sr Name Code Value state_dict

1 Input - (784,) -

2 fcl nn.Linear (784,200) fcl.weight
fcl.bias

3 Relu Frelu - -

4 Dropout nn.Dropout p=0.2 -

5 fc2 nn.Linear (200,200) fc2.weight
fc2.bias

6  Relu Frelu - -

7  Dropout nn.Dropout p=0.2 -

8§ fc3 nn.Linear (200,10) fc3.weight
fc3.bias

9 LogSoftmax Flog_softmax dim=1 -

TABLE 5. CNN architecture for Fashion-MNIST.

Sr Name Code Value activation state_dict

1 Input - (1,28,28) -

2 convl nn.Conv2d (I, 6, 5, Frelu convl.weight

padding=2) convl.bias

3 Maxpool F.MaxPool2d (2, 2) -

4 conv2 nn.Conv2d (6,16, 5) Frelu conv2.weight
conv2.bias

5  Maxpool FEMaxPool2d (2, 2) -

6 flatten torch.flatten (400, 1) -

7 fcl nn.Linear (400,120) Frelu fcl.weight
fcl.bias

8 fc2 nn.Linear (120,84) Frelu fc2.weight
fc2.bias

9 fc3 nn.Linear (84,10) Frelu fc3.weight
fc3.bias

10 LogSoftmax Flog_softmax dim=1 -

The LogSoftmax for scalar x; € x is given by [52]
exp(x;)
Zj exp(x;)

The CNN architecture for fashion-MNIST is shown in
Table 5. The architecture is based on Lenet-5 [53].

LogSoftmax(x;) = log < ) . X, xi€x. (9)

B. AGGREGATION APPROACHES

For cross-silo FL, the weight-scaling factor in (7) as per
aggregation policy for the FL task can be determined
based on the number of samples in the local datasets.
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For unencrypted and encrypted aggregation, this leads to
a total of four approaches for comparing the aggregation

time.
o encrypted-lazy approach: The weight-scaling is per-

formed at the aggregator on encrypted weights. This
requires more computation time at the aggregator. This
approach is optimal when the weight-scaling factor is
not known before homomorphically encrypting the local
models at FL-trainers. This approach preserves input
privacy.

o unencrypted-lazy approach: The weight-scaling is per-
formed at the aggregator on unencrypted weights. This
requires more computation time at the aggregator. For
this approach, no HE is performed at FL-trainers,
S0 input privacy is not preserved.

o encrypted-aggressive approach: The weight-scaling is
performed by the FL trainers on un-encrypted weights,
afterward homomorphic encryption is performed by
FL-trainers. This approach requires less computation
time at the aggregator and also preserves privacy.

o unencrypted-aggressive approach: The weight scaling is
performed by the FL-trainers on un-encrypted weights.
For this approach, no HE is performed at FL-trainers.
This approach does not preserve input privacy.

C. QUANTITATIVE EVALUATION

1) MODEL SIZE

The storage requirement for FL aggregation depends upon
the number of silos and model architecture. The state_dicts
of models are stored using the pickle package of python.
Fig. 3 (a) and Fig. 3 (b) shows the model size for state_dict
of a simple(un-encrypted local model), encrypted (local
model), and aggregated encrypted (global) model for NN
architecture given in Table 4 for MNIST classification and
CNN architecture given in Table 5 for Fashion-MNIST clas-
sification respectively. The simple(un-encrypted) state_dict
is converted from tensors to list form using tolist() function
to perform encryption using TenSEAL. So, the model size
is significantly increased per local or per global model
to preserve the input privacy of the FL process through
homomorphic encryption.

2) AGGREGATION TIME PER GLOBAL EPOCH

The aggregation time requirement for cross-silo FL aggrega-
tion depends upon the number of silos and the aggregation
scheme. For N = 3, the average aggregation time per global
epoch for MNISTs’ NN is shown in Fig. 3 (c). Similarly, for
N = 3, the aggregation time per global epoch for Fashion-
MNIST’s CNN is shown in Fig. 3 (d). The aggregation time
for different approaches for different number of FL-trainers
N = [3, 10] is shown in Fig. 3 (e) and Fig. 3 (f) for MNIST’s
NN and Fashion-MNIST’s CNN respectively. It seems the
aggregation time for the encrypted-lazy approach increases
steeply w.r.t N. This is because encrypted multiplication with
scalar is computationally expensive in TenSEAL. Compara-
tively, the encrypted-aggressive approach is less steep as only
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FIGURE 3. (a) Model size in MB for un-encrypted(simple), encrypted (local model), and aggregated encrypted (global model) state_dicts for
MNIST dataset, N=3. (b) Model size in MB for un-encrypted(simple), encrypted (local model), and aggregated encrypted (global model)
state_dicts for Fashion-MNIST dataset, N = 3. (c) Aggregation time in sec per epoch for different aggregation approaches for MNIST's NN
model, N = 3. (d) Aggregation time in sec per epoch for different aggregation approaches for Fashion-MNIST’s CNN model, N = 3.

(e) Aggregation time in sec per epoch for different aggregation approaches for MNIST’s NN model, N = [3,10]. (f) Aggregation time in sec
per epoch for different aggregation approaches for Fashion-MNIST's CNN model, N = [3,10].

addition is required in the aggregation process. So for large N,
an encrypted-aggressive approach is recommended, provided
the weight scaling factor is pre-determined. It is necessary
to mention that the aggregation scheme for Fig. 3(e) has
been tweaked to accommodate more FL-trainers (silos),
thus there is a difference of aggregation time at N = 3
with Fig. 3(d).

3) ACCURACY

Table 6 and Table 7 show the accuracy of global mod-
els aggregated through different approaches for MNIST’s
NN and Fashion-MNIST’s CNN models respectively. The
accuracy of global models aggregated through unencrypted-
lazy, encrypted-lazy, unencrypted-aggressive, and encrypted-
aggressive approaches have the same accuracy. This shows
that incorporating input privacy in the FL process does not
affect accuracy.
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4) OUTPUT VERIFICATION

Our framework ST-BFL provides output verification, which
means that the aggregation at the FL-aggregator is verified by
FL-verifiers. This prevents foul play and malicious activities,
thus preventing the accuracy to fall as well as maintain the
integrity of the FL process. Fig. 4 and Fig. 5 shows that our
framework prevents the aggregation attack at FL-aggregator.

D. QUALITATIVE EVALUATION

1) AUDIT TRAIL

Our FL through Ethereum and IPFS scheme offers a complete
trail of the FL process from initialization to convergence. The
proposed framework can ensure decentralized accountability
for collectively learned ML models by exploiting the non-
repudiation property of blockchain, thus increasing the
reliability of the FL process. This ensures that the false-
aggregation attacks on the FL process can be caught
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TABLE 6. Accuracy for MNIST, N = 3.

Epochs locall local2 local3 unencrypted encrypted lazy unencrypted ag-  encrypted
lazy gressive aggressive
0 - - - 0.08 - - -
1 0.38 0.39 0.19 0.22 0.22 0.22 0.22
2 0.38 0.39 0.32 0.50 0.50 0.50 0.50
3 0.38 0.39 0.37 0.45 0.45 0.45 0.45
4 0.38 0.39 0.40 0.60 0.60 0.60 0.60
5 0.38 0.39 0.40 0.70 0.70 0.70 0.70
6 0.38 0.39 0.41 0.74 0.74 0.74 0.74
7 0.74 0.74 0.74 0.74 0.74 0.74 0.74
8 0.74 0.74 0.74 0.74 0.74 0.74 0.74
TABLE 7. Accuracy for Fashion-MNIST, N = 3.
Epochs locall local2 local3 unencrypted encrypted lazy unencrypted ag-  encrypted
lazy gressive aggressive
0 - - - 0.04 - - -
1 0.79 0.79 0.77 0.71 0.71 0.71 0.71
2 0.79 0.78 0.77 0.86 0.86 0.86 0.86
3 0.79 0.80 0.78 0.87 0.87 0.87 0.87
4 0.78 0.78 0.77 0.86 0.86 0.86 0.86
5 0.78 0.78 0.76 0.87 0.87 0.87 0.87
6 0.78 0.81 0.78 0.87 0.87 0.87 0.87
7 0.79 0.80 0.78 0.87 0.87 0.87 0.87
8 0.79 0.80 0.78 0.87 0.87 0.87 0.87
10 091 = Y = W Pyt
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FIGURE 4. Accuracy for ST-BFL and traditional-FL under aggregation
attack for MNIST (N = 10).

and mitigated by validating the aggregation process by
FL-verifiers. It is worthy to mention that given a public
context for TenSEAL homomorphic scheme, an aggregation
policy, and the input state_dict to aggregation scheme;
the resultant state_dict is deterministic that is it has the
same byte sequence and so IPFS hash. This makes the
output verification of our proposed FL scheme as simple as
comparing the IPFS hash of resultant aggregated state_dicts
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Global Epochs

FIGURE 5. Accuracy for ST-BFL and traditional-FL under aggregation
attack for Fashion-MNIST (N = 10).

of FL-aggregator and FL-verifiers, while the output privacy
remains intact through homomorphic encryption.

Moreover, the audit trail also helps in devising the incentive
in terms of coins(monetary) and reputation.

2) STORAGE
Our designed scheme requires very little on-chain storage so
the cost of operating is significantly reduced.
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FL_Task_Smart_Contract

Private:

taskPublisher: address

globalEpoch: uint
cardinalityRegisteredFLtrainers: uint
aggregationScheme: File
modelArchitecture: File
initialModelWeights: File
registeredFLtrainers: address[]
SKHEpubContexts:
mapping(uint=>FileWithGlobalEpoch)
SKHEpriContexts:
mapping(uint=>FileWithGlobalEpoch)
localModels: mapping(uint=>LocalModel[])
globalModels: mapping(uint=>GlobalModel[])
confirmedGlobalModels:
mapping(uint=>ConfirmedGlobalModel)
decryptedGlobalModels:
mapping(uint=>ConfirmedGlobalModel)
currAggregationEpoch: mapping(uint=>uint)

<<struct>>  File
- ipfsHash: string - filename: string
<<struct>> FileWithGlobalEpoch F————@%¢

file: File
globalEpoch: uint

<<struct>> LocalModel

FLtrainer: address

fileWithGlobalEpoch: FileWithGlobalEpoch

<<struct>> GlobalModel

fileWithGlobalEpoch:
FileWithGlobalEpoch
aggregationEpoch: uint
FLaggregator: address
FLverifiers: address[]
confirmed: bool
FLverifiersVoted: address[]

<<struct>> ConfirmedGlobalModel

fileWithGlobalEpoch:
FileWithGlobalEpoch
FLaggregator: address
FLverifiers: address[]
FLverifiersVoted: address[]

Private:

onlyRegisteredFLtrainers(testAddress: address): bool

Public:

<<event>>aggregationSchemeUploaded()
<<event>>modelArchitectureUploaded()

<<event>> initialModelWeightsUploaded()

<<event>> SKHEpubliccontextUploaded(global Epoch: uint)

<<event>> FlLglobalEpochStarted(globalEpoch: uint)
<<event>>LocalModelWeightsUploaded(FLtrainer: address,
currGlobalEpoch: unit)

<<event>> GlobalModelconfirmed(currGlobalEpoch: uint)

<<event>> FLglobalEpochFinished(currGlobalEpoch: uint)

<<event>> FLaggregatorSelected(FLaggregator: address, currGlobalEpoch:
unit, aggregationEpoch: unit)

<<event>> FLverifiersSelected(FLverifiers: address[], currGlobalEpoch: unit,
aggregationEpoch: unit)

<<modifier>> taskPublisherOnly()

<<modifier>> globalEpochZero()

<<modifier>> global EpochNonZero()

constructor()

uploadAggregationSchemeTx(ipfsHash: string)
uploadModelArchitectureTx(ipfsHash: string)
uploadlnitialModelWeightsTx(ipfsHash: string)
RegisterFLtrainerTx(FLtrainerAddress: address)
uploadSKHEpublicContextTx(ipfsHash: string, CurrGlobalEpoch: uint)
uploadSKHEprivateContextTx(ipfsHash: string, CurrGlobalEpoch: uint)
downloadInitialModelWeightsTx(): File
downloadModelArchitectureTx(): File
downloadAggregationSchemeTx(): File

getCurrGlobalEpoch(): uint

uploadLocalModelWeightsTx(ipfsHash: string, currGlobalEpoch: uint)
downloadSKHEpublicContextTx(currGlobalEpoch: uint)
uploadGlobalModelWeightsTx(ipfsHash: string, currGlobalEpoch: uint)
downloadEncryptedGlobalModelTx(currGlobalEpoch: uint)
uploadDecryptedGlobalModelTx(ipfsHash: string, currGlobalEpoch: uint)
downloadDecryptedGlobalModelTx(currGlobalEpoch: uint)
voteGlobalModelTx(currGlobalEpoch: uint, vote: uint)
confirmGlobalModel(ipfsHash: string, currGlobalEpoch: uint)
downloadLocalModelsTx(currGlobalEpoch: uint): LocalModel[]

SelectFLaggregator(FLaggregator: address, currGlobalEpoch: unit,
aggregationEpoch: unit)

SelectFLverifiers(FLverifiers: address[], currGlobalEpoch: unit,
aggregationEpoch: unit)

FIGURE 6. Simplified UML diagram for smart contract SVy.

3)

Our designed scheme removes the single-point-of-failure at
the aggregation step. It also enforces the FL-aggregators for

SINGLE-POINT-OF-FAILURE

honest aggregation.
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4) INPUT PRIVACY

The local models are
encryption. Thus input privacy
only from outsiders, FL-aggregators,

remains intact
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also from other trainers participating in the same FL
task.

5) OUTPUT PRIVACY

The global models can be decrypted by FL-trainers only. Thus
output privacy remains intact from outsiders, FL-aggregators
as well as FL-verifiers.

6) INPUT VERIFICATION

Since our framework is concerned with cross-silo FL, there
is no incentive for poisoning attack for the FL trainers
as they put their resources and time to jointly train the
high-accurate global model. However, if necessary in ST-
BFL, the encrypted local models can be evaluated on a
deterministic shuffled test dataset by the FL-aggregators and
FL-verifiers to agree upon encrypted-predicted labels for the
encrypted local model. This encrypted-predicted labels and
actual (unencrypted) target labels can be sent to TPy for
decryption using SKHEﬁ ;i . The TPy calculates the accuracy
and afterward log against the respective local model. Though
this method relies on the honesty of TP;.

7) OUTPUT VERIFICATION
The aggregation process by FL-aggregator is validated by FL.
verifiers, thus output verification is done.

8) FLOW GOVERNANCE
Initially, the FL-task publisher initiates FL flow. Afterward,
The smart contract orchestrates the FL process.

VI. CONCLUSION

FL is a distributed ML scheme where training data remain
on-device. Local models in FL are still subject to infer-
ence attacks. The centralized server is also vulnerable
to aggregation attacks and is a single point of failure.
To mitigate these issues, we proposed ST-BFL, a structured
transparency empowered cross-silo federated learning on
the blockchain framework. We describe how different
components of structured transparency such as input privacy,
output privacy, input verification, output verification, and
flow governance are satisfied in our proposed approach
with help of homomorphic encryption, FL-aggregators, and
FL-verifiers, and smart contract. We performed a quantitative
and qualitative evaluation of our framework. It is shown
that ST-BFL has the same accuracy as traditional FL.
Lastly, we analyze our framework from the perspective of
aggregation time, accuracy, and storage size. In the future,
we intend to evaluate our proposed framework on multi-
key homomorphic (MKHE) schemes as soon as the feasible
libraries are available. Moreover, we will work on input
verification while maintaining input privacy in the ST-BFL.
We will also try to extend our work to be applicable in
cross-device FL settings, for this we will integrate the reward
mechanism still maintaining the input privacy for the better
flow governance of the FL process.
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APPENDIX A
SMART CONTRACT UML DIAGRAM
See Fig.6.
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