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ABSTRACT Federated learning (FL) enables the training of a shared collaborative machine learning model
while keeping all the confidential training data on distributed devices. The FL state-of-the-art considers a
monopolist FL task publisher. However, we present a FL marketplace where multiple FL task publishers and
mobile devices co-exist for a set of diverse and varying learning tasks. Mobile devices participating in the
training of FL models provides pay-as-you-go (i.e. using blockchain-based cryptocurrencies) FL training
services to the FL task publishers. In the proposed framework, multiple FL task publishers may compete
with each other and the participating workers (i.e. mobile devices) can choose one FL task publisher over
another for participation in the training of a global model.We utilize code offloading for enabling customized
FL pipelines in mobile devices and mitigating the model heterogeneity inherent in varying and changing FL
tasks published by the task publishers. Experimental results indicate the efficacy of the proposed framework.

INDEX TERMS Federated learning, blockchain, smart contract, marketplace, computational offloading.

I. INTRODUCTION
The pervasive and ubiquitous penetration of smart devices,
e.g., smart mobile devices, smart wrist bands, body sensors,
home appliances, and autonomous cars into day-to-day life
generates a massive volume of data. These smart devices take
leverage of machine learning technologies for improving the
generalized user experience. On the other hand, corporations
providing the application ecosystems for these smart devices
are eager to collect and analyze the massive data distributed
across the user devices both formaking service improvements
and making a business value out of the data. However, this
data collection and analysis is not trivial in terms of storage
and processing at the central servers. Moreover, enforcement
of administrative and regulatory laws such as the European
General Data Protection Regulation (GDPR), China’s Cyber
Security Law, and the United States California Consumer
Privacy Act, restricts sharing and collecting user data. This
scarcity of training data volume can hinder the performance
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of machine learning tasks carried out in corporations. Fur-
thermore, the commercial competition between data aggre-
gators and application service providers also restricts data
sharing. Since, with these restriction in place the number
of training samples would not be large enough to general-
ize the model which affect the performance of the trained
model.

Federated learning (FL) is a distributed privacy-preserving
machine learning technique that enables mobile devices to
collaboratively train a shared global model without the need
of uploading private local data to a central server to overcome
the privacy concerns caused by centralized machine learning
over confidential user data. Figure 1(a) presents the vanilla FL
approach [1]. The pinnacle of success behind FL is mainly
due to the decentralized training process of a collaborative
machine learning model. This decentralization relaxes and
distributes the computation and storage cost of the central
server along with preserving the privacy of the private con-
fidential data distributed across a range of user devices and
application platforms (hereinafter referred to as workers).
In FL, the workers individually and independently train their
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FIGURE 1. (a) Vanilla FL. (b) Illustration of a FL market.

local machine learning models on their confidential data. The
local model weights also referred to as local model updates
(LMUs) are then delegated to a central aggregation server,
while no training data is sent and it remains on the user
devices. FL also minimizes the network traffic cost as only
LMUs are shared while no data is being shared. After collect-
ing local model weights from a qualified number of worker
nodes, the central server aggregates the received weights gen-
erally by averaging to form a new global collaborative model,
which will be delivered to the workers for the next round
of model training. This distributed training iteration repeats
until the global model converges to satisfying test accuracy.
Through FL, the individual privacy of user data could be
effectively preserved as no private data is shared among the
user device and the central server. However, due to the lack
or in-existence of monetary incentives user devices are reluc-
tant to become workers for FL tasks. Furthermore, the user
devices may be competing and reluctant to share their model
parameters since the competitors also benefit from a trained
global model [2].

Providing monetary incentives for monetizing the
on-device FL can increase the expectation of user devices for
participating in training the global predictive model. In this
context, the notion of a market similar to crowdsourcing
platforms such as amazon mechanical turk1 seems a fitting
substitute where the worker monetize their model parameters
trained on their private data. In this manuscript, we perceive
an FL market (presented in Figure 1(b)) where individuals
can monetize execution of the FL process requested by an
FL task publisher on their mobile device and provide focused
LMUs to the FL task publisher server in compliance with
the GDPR to safeguard the user’s privacy. FL task publishers
that are willing to pay the price to geographically dispersed
different user devices for training the FL model on user’s
local data will publish their task specifications for interested
worker mobile devices. In the perceived FL market the FL

1https://www.mturk.com/

task publisher establishes on-demand ad-hoc FL networks
of distributed mobile devices to complete a learning task.
Therefore, unlike the conventional FL environments that con-
sider a monopolist FL task publisher primarily with a single
task, the FLmarket enables the competition between multiple
FL task publishers (possibly with multiple numbers of tasks)
with each other and enables the participants to choose one FL
task publisher over another for participation in the training of
a global model. FL task publishers can collect LMUs from
a large crowd of users, which makes the market a useful
channel for corporations and in the formation of private FL
overlays. Individuals providing LMUs can control their FL
process by managing how much wall clock time they reg-
ister on the market including the price of each FL session.
On the other hand, the FL task publishers can publishmultiple
tasks and provide monetary incentives for the LMUs to the
users who subscribed to their tasks. Therefore, perceiving
a double-sided FL market model where task publishers and
individuals jointly operate the market for their rational bene-
fits. Hereinafter, FL task publisher, task publisher, aggregator,
FL aggregator, and buyer are used interchangeably. Similarly,
worker, client, participant, mobile/user device, and seller are
used interchangeably.

The FL marketplace (where mobile users sell LMUs and
FL task publishers go to buy LMUs for an FL process) based
on guidelines of electronic marketplaces in [3] perform three
essential market functions: (a) matching of model sellers
and model buyers; (b) facilitating the exchange of informa-
tion regarding FL process, and the payments associated with
market transactions; and (c) providing a legal and regula-
tory framework, that enables the efficient functioning of the
market. Generally, the first two marketplace functions are
provided by centralized intermediaries (i.e. business entities
referred to as brokers/auctioneers), while the legal and regu-
latory framework falls under the umbrella of statutory rules
and regulations set by governments. However, the centralized
intermediaries might be dishonest and result in payment theft,
collude, and contract manipulations and pose trust issues to
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the market participants (i.e. sellers and buyers) for executing
the market functions. Furthermore, with the dynamic birth
and death of agents in themarketplace, the conventionalmode
of payments through banking or credit transfers from the
network operators (provided the FL task publisher have prior
agreements with network operators) is not suitable for the FL
marketplace to minimize the churning and free-riding of the
worker nodes. To address the problem of trust associated with
the payments, we consider blockchain technology [4], due to
the consensus, provenance, ownership, immutability, final-
ity, and access control attributes for executing the payment
functions of the marketplace. More specifically we utilized
the Ethereum blockchain protocol [5], [6] that supports a
Turing-complete language and has its native cryptocurrency
i.e. Ether. Ethereum virtual machine (EVM) in the ethereum
blockchain network executes the code referred to as ‘‘smart
contract’’ behind DApps and publishes the resulting output to
the respective blockchain following a consensusmethod simi-
lar to Bitcoin [4]. The distributed nature of EVMmakes smart
contracts impossible to censor and eliminates trust issues
posed by a centralized administrator in distributed applica-
tions such as the marketplace.

The main contributions of this article are summarized as
follows:
• We explored an FL environment where multiple FL
servers may compete with each other and the partici-
pants can choose one FL server over another.

• We utilized blockchain as a means to trade and incen-
tivize the mobile device workers for providing FL ser-
vices to the FL task publishers.

• Wedevise a novel method to incentivize reputed workers
with high-quality training data that is more useful for the
collaborative global model of the task publisher.

• We utilize reverse code offloading to enable customized
FL pipelines in mobile devices and to mitigate the model
heterogeneity inherent in varying and changing FL tasks
published by the task publishers.

II. RELATED WORK
The concept of FL under the definition of distributed arti-
ficial intelligence can be traced back to 1980 [7]. Google
introduced the privacy-preserving FL concept for context
predication in the virtual keyboard for their flagship android
operating system [8]. Following this, the authors in [9] dis-
cuss the architectural concepts and potential applications of
federated machine learning. The majority of the FL state-
of-the-art literature can be classified into the performance
of learning algorithms in terms of learning time/accuracy,
client selection [10], training security [11]–[13], and incen-
tive mechanism design [14]–[16].

Most of the existing FL studies generally assume a monop-
olist environment consisting of K workers collaborating with
a single FL server. There are few articles such as [17],
[18] which consider an FL system model comprising of
multiple FL task publishers. Authors in [17] considered
bandwidth allocation in wireless networks hosting multiple

co-existing FL services. On the other hand, authors in [18]
proposed a mechanism design oriented FL protocol on a
public blockchain network to reward only well-contributing
workers. However, the proposal presented in [18] is impracti-
cal in terms of the gas cost associated with the smart contract
functions since the intensive workload is being delegated in
the smart contracts. Furthermore, the overall time latency
involved in the FL process will be very high due to the eval-
uation and voting process of all local models submitted for
aggregation. Lastly, their proposed system cannot be gener-
alized since it is bounded to a single model type (i.e. DNN).
However, in a practical setting, every task publisher will be
interested in training a different machine learning model in
different time slots. In this response, we consider an alternate
setting to this where multiple FL servers may compete with
each other and the participants can choose one FL server over
another to train the globalmodel while provisioningmonetary
incentives to participating clients and handling the model het-
erogeneity and training data preparation using computational
offloading.

III. FedMarket: MARKETPLACE FOR MOBILE FEDERATED
LEARNING SERVICES
The system architecture in figure 2 presents the participants
of the system, buyers (i.e., FL task publishers), sellers (i.e.,
mobile devices) interacting via a broker (i.e. a central cloud
service), and the ethereum distributed ledger. In FedMarket,
mobile devices offer FL services in terms of executing the FL
client processes for the FL task publishers with varying QoS
attributes. In theory, there could be a large number of FL task
publishers providing differential incentives to execute their
FL tasks over mobile devices with minimum prices and better
QoS. Mobile devices are interested to maximize their profit
or revenue by selling their resources at a high price while
meeting the requirement of the FL task publishers. To achieve
their respective objectives, both the mobile devices and the
FL task publishers compete strategically in the FL market.
Furthermore, monetary incentives can enhance the motiva-
tion of mobile devices to subscribe to the learning task of
the publishers [19]. To provision monetary incentive we con-
sider decentralized escrow (similar to one proposed in [20])
based on Ethereum blockchain protocol [5], [6] for executing
escrow functions of a marketplace.

A. FL TASK PUBLISHERS: BUYERS
FL task publisher (i.e. buyer) is interested in buying the
willingness of mobile devices (i.e. sellers) for the execution
of FL worker tasks to train a collaborative global predic-
tive model. For each task to publish the task publishers are
required to submit the intermediate level bytecode of the
‘‘ClientUpdate’’ function of the vanilla FL algorithm [1]
to the central broker. Depending upon the target device het-
erogeneity the publisher can register multiple flavors of the
FL worker ClientUpdate function for a range of different
device types.
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FIGURE 2. FedMarket - a blockchain-based marketplace for multiple FL services.

In vanilla FL participating mobile devices should agree
on a particular model w so that the global machine learn-
ing model can be trained effectively by aggregating the
model weights obtained from mobile applications. How-
ever, practically mobile devices/applications, craft their
model architecture adaptive to their learning objective and
application environments. Mobile applications due to pri-
vacy concerns not willing to share the model architec-
ture details. Hence, the model architectures from different
mobile applications exhibit heterogeneous model shapes and
structures, making it impossible to perform aggregation by
conventional FL. Model heterogeneity inherent in mobile
environments has attracted considerable research atten-
tion due to its practical significance for intelligent mobile
applications [21], [22].

On the other hand, in a marketplace where there are
multiple FL task publishers, each of the publishers as
illustrated in Figure 3 will be using a different type of
machine learning algorithms in federated settings. Further-
more, each publisher for each task after a passage of
time might be interested in training its predictive model
using a different machine learning algorithm in federated
settings.

To address the curse of model heterogeneity and chang-
ing dynamics of the required model by a task publisher in
the FL marketplace we consider the notion of publishing
the intermediate level bytecode of the ‘‘ClientUpdate’’
which is then dynamically loaded by selling agents using
code offloading techniques. Dynamic code loading enables
FL task publishers to inject their task-specific FL worker
code into the selling agents. This will allow the seller for
performing different types of tasks and will need not to

FIGURE 3. Model heterogeneity in FL markets.

maintain and inline itself with all possible buyers and the
type of FL mechanism they are implementing. The buyer will
implement the ClientUpdate procedure which result in
transparency in term of heterogeneity of model architecture
and machine learning mechanism from the seller’s point of
view. Furthermore, the task publisher implementation of the
FL client also enables the task publisher to implement mecha-
nism that ensure the freshness of the training data, along with
capabilities of pre-processing and interactive data acquisition
from the seller.
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In addition to the ClientUpdate function, for each task,
the task publisher also needs to submit a test data set and
a Model Accuracy Testing (MAT) application to the central
broker server. The test data set posted by the FL task publisher
is the data set used by the publisher to test the accuracy of
the converged global collaborative model. This dataset and
the MAT application will be used by the broker for veri-
fying and cross-checking the accuracy reported by the task
publisher for fair incentive delivery. Besides publishing the
software packages (i.e., ClientUpdate function and the
MAT application) and the test data set the buyer while posting
an FL task in the marketplace needs to publish the following
FL task parameters:
• Date and time at which the buyers need LMUs from the
mobile devices.

• Details of the FL task preferably using ontological rep-
resentation such as described in [23].

• Desired price, the price buyer wants to pay a single seller
for a complete session of FL client execution.

• Highest acceptable price, the highest price buyer wants
to pay a single seller for a complete session of FL client
execution.

• Number of workers, the number of sellers required by a
buyer for executing the FL client algorithm.

• Top-κ percent workers to which the publisher will
release the incentives.

The crude behavior of the FL task publishing agent is pre-
sented as Algorithm 1. Once, the buying agent posts a task,
and the broker publishes the task after approving through
manual and automated profiling of the task for security and
vulnerability analysis. The task publisher agent starts to listen
to request from the selling agents, it autonomously (i.e. with-
out user intervention) negotiates with selling agents trying to
make the best possible deal. Buyer agents are discovered by
interested FL sellers through the ontological representation
and these buying agents can autonomously negotiate with-
out user intervention and make decisions on its own once it
is released into the marketplace. Autonomous negotiation is
important for buying agents due to the possibility of involve-
ment of a large number of selling agents interested in reg-
istering as a worker for the published task. Once a buying
and selling agent has reached an agreement on a price and
gotten their respective user’s approval. At this stage, the buyer
requests the broker for initializing an escrow between the
buyer and seller using a blockchain smart contract. Next, the
buyer agents deposit the agreed price into the escrow and
start consuming the seller FL service by requesting seller
model updates via the broker. Once the FL task is finished
the buyer will request the final models from all the workers
subscribed for the task via the broker to identify the reputed
top-κ workers who will receive incentives.

1) FINDING TOP-κ REPUTED WORKER
The Top-κ reputed worker (i.e. seller) for a single FL task is
identified by the FL task publisher after the FL task is com-
pleted to which the workers subscribed. Since all the mobile

Algorithm 1 TaskPublishingAgent
1: procedure PublishTask
2: Post FL task parameters i.e. ontology, required no.

of workers, schedule, & pricing to broker.
3: Post a test data set and MAT application to broker.
4: Post ClientUpdate bytecode to broker.
5: if broker approves everything then
6: Publish the FL task as T
7: while Receive worker request via broker until the

number of required workers is achieved do
8: Negotiate for the best deal based upon desired

price and highest acceptable price.
9: If the worker agrees with the proposed deal

request broker to initialize the escrow smart contract.
10: Deposit negotiated amount into the smart

contract.
11: Notify worker via the broker.
12: end while
13: end if
14: if Schedule Approaches then
15: FLServer(T )
16: end if
17: end procedure
18: procedure FLServer(T )
19: intialize w0
20: for each round t = 1, 2 . . . do
21: St ← (random set of m clients) F m is the client

participating rate ranging from (0, 1]
22: for each client k ∈ St in parallel do
23: wkt+1 ← RequestUpdate(k,wt , T ) from the

broker
24: wt+1←

∑K
k=1

nk
n w

k
t+1

25: Xk ← t
26: end for
27: end for
28: for each client k = 1, 2 . . .K do
29: wkc ← RequestModel(k, T ) from the broker
30: Ak ← TestAccuracy(wc)
31: end for
32: topWorkers← FilterWorkers(X ,A, k,K )
33: Send topWorkers list to broker.
34: end procedure

devices report their final model to the FL task publisher via
the broker. The task publisher then evaluate the accuracy of
all themodels and selects the top-k worker based upon the test
accuracy to which the incentives should be provisioned. The
task publisher computes the accuracy using the same test data
set on which the accuracy of the global model is computed.
Furthermore, this is the same data set that is being submitted
to the broker while posting the FL task. The broker randomly
selects three workers from the chosen top-k workers and re-
computes the test accuracy to ensure the truthfulness of the
reputation score reported by the task publisher. However,
it is imperative that the workers might not be included in
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Algorithm 2 Top-κWorker
1: procedure FilterWorkers(X ,A, κ,K )
2: workers← {1, . . . ,K } F List representing the set of

all workers
3: A′ ← Create dictionary from A where the key is

worker id and value is accuracy of the worker k
4: Sort(A′)
5: while |workers| > K × κ do F Iterate until desired

threshold of κ-top percentage of worker are filtered.
6: α← argmin

k
Xworkersk F Using equation to select

a cut off worker from the set of workers.
7: for each key k in A′ do F Iterating the

dictionary
8: if Aα ≥ Ak then F Filtering rule
9: workers← workers− {kth worker } F

Remove worker from the filtered list
10: remove kth key from A′

11: if |workers| == K × κ then
12: break
13: end if
14: end if
15: end for
16: end while
17: return workers F Final list of worker who will

receive incentives
18: end procedure

the final training rounds of the global model and their final
submitted model accuracy will not be fairly comparable to
each other. Since in each round of global model training the
publisher randomly chooses the workers and requests their
LMUs via the broker. To ensure that monetary incentives are
provisioned to only workers with high-quality data suited for
the global collaborative model which is of interest to the task
publisher we devise the following strategy.

Let us consider Xk = R, where 1 < R ≤ T represents
the final global training round a worker k is included for
providing LMU to train the global collaborative model, T
represents the total number of global training rounds. Ak rep-
resent the accuracy of the final local model submitted to the
task publisher via the broker by eachworker 1 < k ≤ K .Ak is
calculated by the task publisher using the test data set used for
computing the accuracy of the global predictive model. Now
the following equation finds theworkerαwithminimumfinal
round iteration attendance from the list of K workers.

α = argmin
k
Xk (1)

The accuracy of α worker is used as cut out point i.e. for
all workers k if the Aα > Ak remove worker k from the list
of the top-κ reputed workers. This process is repeated until
the cardinality of the top-κ reputed workers’ list shrinks to
the percentage published by the task publisher. The top-α per-
centage of workers eligible to receive the monetary incentives
are shortlisted using the iterative procedure ‘‘FilterWorkers’’
presented in Algorithm 2.

Algorithm 3 SellingAgent
1: procedure Find&RequestTask
2: Search and select a buyer based on task ontological

parameters, schedule, and pricing.
3: Send request and negotiate with the selected buyer.
4: if buyer accept the request AND broker confirms the

escrows then
5: Dynamically loads the ClientUpdate() procedure

for the task from the broker.
6: end if
7: if Schedule Approaches then
8: Start FLWorker
9: end if
10: end procedure
11: procedure FLWorker F Run on client k
12: while task finishing message not received from bro-

ker do
13: Received a request from the buyer with global

model w to submit the LMU.
14: w← ClientUpdate(w)
15: Send w to buyer via the broker.
16: end while
17: Send w to the broker.
18: end procedure
19: procedure ClientUpdate(w) F This update

procedure is dynamically loaded from the broker, it was
originally published by the buyer with broker

20: B← (split private data into batches of size B) F

Here the buyer can implement any pre-processing or data
acquisition logic

21: for each local epoch i from 1 to E do
22: for batch b ∈ B do
23: w← w− η∇`(w; b)
24: end for
25: end for
26: return w
27: end procedure

B. MOBILE DEVICES: SELLER
Mobile users are presented by selling agents which sells the
user willingness for executing a client FL process published
by an FL task publisher to perform local training over the
mobile device private data and transmit LMUs to the respec-
tive FL task publisher. Algorithm 3 presents the generalized
behavior of the FL task agent residing on the client mobile
device, forthcoming paragraphs explain the working behavior
of the selling agents.

A user can launch multiple selling agents. However, a sin-
gle selling agent is associated at a time with a single FL task
by a task publisher, on completion of the agreement or the FL
task, the agent can sell its willingness for executing another
FL task. The end-user has total control over the behavior
of the selling agent. When the user first initializes the sell-
ing agent, they set various parameters from the ML-Schema
ontology to guide the matchmaking behavior. The seller’s
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TABLE 1. Datatype heterogeneity cause by manual curating of training
data at each users.

goal is to receive the highest possible price for its resources.
Exactly how to achieve this goal is left to the end-user con-
trolling the seller agent. While the users are free in terms of
how to achieve their objective. The crude heuristic is: begins
searching willing buyers based on the ontological parameters
such as model and data set characteristics, date and time at
which the selling agent can execute the client FL process,
and price ranges if there is any. If the search results do not
show up any buyer, the user can change the search parameters
accordingly. There may be no buyers (perhaps the search
parameter of user interest is not listing any). In this case, the
agent fails to achieve its goal.

In an FL marketplace where mobile device workers (espe-
cially when workers dynamically load the client FL process)
serving an FL task publisher for a common learning task
needs structural homogeneity of the data types in all workers.
This type of heterogeneity is mainly caused due to the man-
ual curating of the training data available at mobile devices
illustrated in Table 1.

To address the structural homogeneity of the data types
considering a large number of mobile devices in the FL mar-
ketplace the data acquisition for on-device FL is recorded by
the onboard electro-mechanical sensors of the smart device.
This data acquisition of automatically produced data is nat-
urally supported by the dynamic code loading by the selling
agent. Another type of automatically produced data is of sys-
tem/application log files of the smart device. The user is not
required to curate automatically produced data since it will
accumulate as the individual uses the service. Trading of FL
updates from the automatically produced data is important
in the marketplace because of the scale of the users who
can subscribe for the FL task relatively at a very low cost.
Furthermore, the dynamic code loading of the FL task client
in the selling agents allows the task publisher to ensure the
freshness of the training data and also can be programmed
to label the captured data manually by the end-user oper-
ating the selling agents, before the local machine learning
execution.

The user can check on its selling agents, see who they
have talked to. Once the user finds a buyer of interest, the
selling agent will be configured by the user to send a request
with the desired price for subscription as a worker to the FL
task published by the buyer. If the buyer accepts the pro-
posal and initializes an escrow contract with depositing the
desired price into the smart contract marking the selling agent
as a subscribed FL worker. At this point, the selling agents
autonomously request the broker to migrate/offload the byte-
code or binary such as ClientUpdate that implements

the local model update mechanism. This reverse offloading
mechanism is explained in the upcoming subsection. The sell-
ing agents should not offload the LMU mechanism directly
from the buyers to minimize the security risk as the buyer
might inject malicious code in the FL client to compromise
the client device security. Instead, the code offloading should
be from the broker to the mobile device, where the broker has
the responsibility to analyze the LMU mechanism posted by
the task publisher for any malicious intents.

1) REVERSE CODE OFFLOADING
Generally, computational offloading is a software-level solu-
tion which to some extent augments the capabilities of
resource constraint mobile devices by remote execution of the
complete or partial compute-intensive application at a remote
computing infrastructure. Typically computational offloading
is considered for enhancing the energy consumption and exe-
cution time for the programs executing on resource constraint
mobile devices [24].

The most popular and common technique to leverage the
computational power of the cloud in mobile devices is code
migration. This technique involves the delegation of code
execution by migrating a platform-independent intermediate
code (i.e. byte code) to remote cloud servers [25] presented
in Figure 4(a).

Many attempts (such as [26]–[28]) have been done in past
to enable remote execution using code migration for improv-
ing the performance and battery consumption of mobile
devices. Most of these code migration-based offloading
attempts rely on programmers to specify program partitions
using code annotation and skeletons [25].

In our proposed marketplace framework we consider the
same concept of code migration for reverse code offload-
ing presented in Figure 4(b), in which the broker offloads
the FL intermediate code implementing the LMU (i.e. the
client update) mechanism to the mobile device to mitigate
the model heterogeneity issues due to the variety of ML
tasks posted in the marketplace for collaborative process-
ing. Reverse code offloading brings transparency to the dis-
tributed mobile devices concerning the implementation of the
model update mechanism and enables the mobile devices to
register as a worker for any FL task they are interested/willing
to participate. Furthermore, the task publishers curated code
offloading to the mobile device enables the task publisher to
modify the FL pipeline on the distributed crowd of mobile
devices subscribed as workers for the FL task. The client
update mechanism published by the task publisher can con-
tain procedures for customized data pre-processing, label-
ing of automatically produced data, and interactive data
acquisition, along with semantics for executing the client
update if and only if the freshness of local data meet certain
criterion.

C. BROKER
The broker being the central manager of the system is respon-
sible for providing a platform for connecting buyers, and
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FIGURE 4. (a) Remote execution using code migration (b) Local execution using from remotely migrated code.

sellers. Broker act as a third-party intermediary operating
between sellers and buyers. The intermediary business model
recognizes that there is value in providing platform ser-
vices for connecting FL task publishers and participants.
This realization of business value motivates the broker to
be the custodian for the escrow and avoid scenarios of
unwanted troubles, theft, collude, and contractmanipulations.
The intermediary seeks to act as a trusted agent, providing
the opportunity and means for participants (i.e. workers) to
monetize and profit from their profiles following the incentive
mechanism of decentralized blockchain-based escrows [20].
The general services and behavior exposed by a broker
are presented as Algorithm 4 and explained in forthcoming
paragraphs.

In the proposed networked economy model for FL, the
broker collects all buy-bids and sell-bids and provides access
for the blockchain smart contract to execute the incentive
functions. The broker allows buyers and sellers to find a
matching themselves through the process of bidding. How-
ever, the matching that results is not necessarily stable. For
example, seller A might end up selling its FL service to buyer
B, but would have preferred to sell its willingness to execute
FL services to buyer C instead had A known about C (perhaps
A just didn’t see C’s listing in her search results).

On the other hand, the broker should provide a software
development library (SDL) for the publisher to write stan-
dardized FL aggregator, ClientUpdate and MAT agent
applications. This SDL will provide baseline classes, inter-
faces, and hooks that need to be implemented in respective
software packages to allow the broker to communicate with
agents in a homogenous manner. SDL will enable the bro-
ker to maintain a uniform application programmable inter-
face (API) services for pushing the global model into the
FL worker and can pulling the respective LMU from the
FL worker at each iteration of global training triggered by
the FL task publishers. Furthermore, the utilization of SDL

will enable the broker for a systematic online static analysis
and offline security analysis to detect any malicious intents
of the buyer on the intermediate code packages registered
by the FL task publishers. The publisher can be allowed to
connect with sellers if and only if the posted FL client inter-
mediate packages do not have any malicious code. Through
this loose coupling in the development of agents, the bro-
ker can implement state-of-the-art security features in the
SDL for agent communication transparent to the market
participant.

Once an FL process is started by the task publisher, the
broker act as a relay node between the worker and task pub-
lisher as illustrated in figure 5, where as

∑K
k=1

nk
n w

k
(t+1) rep-

resents the naive aggregation presented in the seminal FL
proposal [1]. The buyer calls the RequestUpdate broker
service to pull LMUs from a seller k for FL task T . The
broker pushes the received global model from buyer to seller
and in response receives LMUs from the seller. Broker as
a relay node instead of direct communication between the
task publisher and the mobile devices in the FL process is
incorporated due to the following three reasons.
• The first reason to avoid direct communication between
the task publisher and the mobile devices is due to the
security/privacy concerns of the worker mobile device
especially in an environment where the workers need to
load the task publisher curated/developed client update
mechanism.

• The second reason of broker as relay node correspond to
the network access issues, where the FL task publisher
aggregator is not reachable by a public IP address i.e.
the publisher is operational behind a NAT, practically
allowing any internet-connected device to act as a global
model aggregator.

• The last reason is to maintain a record of the final local
models of each worker mobile to ensure fair incentive
provisioning.
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FIGURE 5. FL process between matched seller and buyer using broker as the relay node.

Upon completion of the FL process, the buyer calls
RequestModel broker service for all the worker to request
their respective final local models. This will also serve as
a termination signal for the selling agents to stop the FL
worker process. Upon delegating the final local models of
all the workers to the buyer the broker will wait to receive
the list of top-κ sellers from the buyer. Next, the broker will
verify the list of top-κ workers and if the broker found the
buyer truthful. Then, only escrows to the top-κ sellers are
released while keeping some percentage as the service fee.
Otherwise, if the buyer is found untruthful, the broker will
penalize the buyer by releasing the escrows to all the sub-
scribed workers for the respective task, while keeping the ser-
vice fee. This penalization of the FL task publisher motivates
the task publisher to be truthful while reporting the top-κ
workers.

IV. PERFORMANCE EVALUATION AND EXPERIMENTAL
RESULTS
In this section, we evaluate the FL process imposed by the
proposed framework along with ensuring the provisioning
of monetary incentives in terms of cryptocurrencies. How-
ever, features such as the optimal matching and price deter-
mination between buyers and sellers are the scope of our
future research. Furthermore, in the proposed framework the
matching is primarily initiated by the user actions behind the
mobile device to find a suitable task of interest. All the agents
are developed using python and the agents use Web3.py to
interact with the ethereum network. The ethereum test-net
is implemented using Go Ethereum blockchain implemen-
tation. For simplicity of the incentive analysis in the mar-
ketplace, the ethereum test-net is configured with zero gas
for running a transaction or contract, and all the agents call

TABLE 2. Task parameters.

the smart contract function with zero gas limit. Furthermore,
each of the platform agents is configured with an ethereum
network address that is used to interact with the underlying
ethereum test-net for depositing and receiving cryptocurrency
from the escrow smart contract.

In our simulation experiments, we introduce two FL task
publishers each with a single task and 400 worker mobile
devices, whereas we hard-wired 200 worker mobile devices
to each task. In practice, the number of tasks an FL task
publisher can post depends on the policy of the broker which
can allow as many tasks as required. On the other hand,
for the seller considering the computational capacity of the
mobile devices their participation should be restricted, in our
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Algorithm 4 BrokerService
1: procedure ListenBuyers F Run in cyclic fashion listening buyer

requests for task publishing
2: Receive FL task details from buyers.
3: Receive MAT application and test dataset for the task.
4: Receive ClientUpdate byte code for the FL task. Security analy-

sis of software packages.
5: if software packages pass the security analysis then
6: Publish FL task T for clients.
7: end if
8: end procedure
9: procedure SearchBuyers F Called by the sellers
10: Receive search parameters from sellers.
11: Return list of all matching active FL tasks to the seller.
12: end procedure
13: procedure BidonTask F Called by the sellers
14: Receive a bid proposal from seller for a particular task.
15: Notify the FL task publisher about the proposal.
16: while the task publisher either rejects or accepts do
17: negotiating messages between seller and buyer
18: end while
19: if task publisher accepts the bid then
20: init escrow over blockchain b/w publisher and seller.
21: Inform the task publisher about the contract address.
22: Wait for publisher escrow deposit to smart contract.
23: if task publisher deposit escrow amount then
24: pair the task publisher and the mobile device.
25: inform publisher and seller about the pairing.
26: else
27: Discard session and remove escrow.
28: end if
29: end if
30: end procedure
31: procedure LoadClient(buyer,T ) F Callable by seller only
32: if buyer and seller is paired for the given task then
33: offload the buyer registered bytecode for task T .
34: end if
35: end procedure
36: procedure RequestUpdate(k,w,T ) F Callable by the buyer only
37: if requesting buyer and seller k is paired for the given task T then
38: Push current global model w to worker k for task T .
39: Pull LMU wk from worker k for task T .
40: Push wk to the buyer.
41: end if
42: end procedure
43: procedure RequestModel(k,T ) F Callable by the buyer only
44: if requesting buyer and seller k is paired for the given task T then
45: Send task finishing signal to the seller k .
46: Pull and store final local model from seller k for the given task T

and delegate it to the requesting buyer.
47: end if
48: if local model of all sellers is delegated to the buyer the given task

then
49: Wait until the List of Top-κ workers is received from the buyer.
50: Choose Random 3 workers from the top workers’ list.
51: Confirm the accuracy of the randomly chosenworkers usingMAT

and the data set submitted by the buyer.
52: if buyer reported truthfully then
53: Release escrow amount to the Top-κ workers.
54: Release the remaining deposit to the buyer.
55: else
56: Release escrow amount to all workers.
57: end if
58: end if
59: end procedure

FIGURE 6. Task 1 learning performance per global iteration.

simulationwe consider a seller to participate in a single task at
a time. The details of the task published by the task publishers
with the broker are presented in Table 2. The first task pub-
lisher publishes Task 1 to train a collaborative logistic regres-
sion global model on the MNIST dataset [29]. While the
second task publisher published Task 2 for training a collab-
orative model using LSTM on Fashion-MNIST dataset [30].
In a crowdsource scenario like the one considered in this
manuscript, the data distribution would generally be classi-
fied as non-IID. In our experiments, we considered non-IID
data distribution in the clients, where the individual clients
mostly hold 5 different classes. According to Table 2 each of
the task publishers has acquired the services of worker mobile
devices on a fixed rate of 10 ethers for the execution of the
FL process, hence the task publishers deposited 10 ether to
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FIGURE 7. Task 2 learning performance per global iteration.

the escrow smart contract of each worker with a total deposit
of 2000 ethers for the complete learning task. The broker
fee on each escrow is 2%. The task publishers are willing to
incentivize up to 50% of the total 200 workers hired, these
workers are filtered through the Top-κ procedure. The task
publisher in practice can set the number of global iteration to
any other stopping condition such as time, or convergence to a
particular level of accuracy, herein our simulation is set to
100 global iterations for Task 1 and 1000 global iterations for
Task 2, and one local iteration at the client for both the tasks.

A. LEARNING PERFORMANCE
The learning performance of Task 1 is presented in Figure 6,
while Figure 7 presents for Task 2. In our simulation setting
the mean final global model accuracy of five experiments
on Task 1 is 87.18%, while for Task 2 it is 84.074%. Note

that, the number of global and local rounds can also play
a significant role in improving the accuracy of the global
round. However, in our experiments, it is fixed. Compared
to the state-of-the-art the reported accuracy can be low since
our objective here in this manuscript is not to investigate and
improve the learning performance of FL algorithms. Rather
the objective is to outline a mechanism for trading mobile
device FL services whereby monetizing mobile device work-
ers with high-quality data learning performance. The learning
performance plotted in Figure 6 and Figure 7 indicates the
acceptable and consistent performance of the FL process in
each run of the experiment, wherein each experiment the data
distributions hosted in clients varies.

B. FILTERING HIGH-QUALITY WORKERS
High-quality workers’ clients in the FL process are identified
using the proposed Top-κ filtering procedure presented in
section III-A1. Table 3 presents the Top-κ clients filtered in
each of the experiments for both the tasks. In the first part
of Table 3, each row presents the Top-κ clients by listing
the client device ids which are selected in the Top-κ filter-
ing procedure while executing the experiment. In the second
part of the Table 3, the Test Accuracy (GM) represents the
testing accuracy of the final global model, while the Min
Accuracy (LM) represent the minimum accuracy of the final
local model submitted by a client (from the Top-κ chosen
clients). Similarly, Max Accuracy (LM) represents the maxi-
mum accuracy of the final local model submitted by a client
from the Top-κ chosen clients. For understanding, in the first
experiment of Task 1 86.31% is the test accuracy of the final
global model, where 52.88% is the test accuracy of the final
local model of client id 172 (i.e. the first client in the Top-κ
client column), whereas 82.93% is the test accuracy of the
final local model of client id 188 (i.e. the last client in the
Top-κ client column). In each of the experiments, the reported
accuracy statistics both for the global model and the local
clients model are computed using the same test dataset (as
explained in the Top-κ filtering procedure). It is noted, that
in all of the experiments of Task 1 and Task 2, the best local
model submitted by a client outperforms the global model
accuracy, except the 5th experiment of Task 2, where the
global model accuracy is 84.49% while the accuracy of the
best local model submitted by a client is 84.38%. The extra
processing steps of testing accuracy of the final local model
of all clients proposed in this manuscript enable the task pub-
lisher to choose a more suitable model from the local model
as a replacement for the global model. Since the accuracy of
the final local models and global model is computed using the
same dataset, the task publisher can replace the global model
with a representative final local model of best-performing
clients as a new global model. However, doing so in each
global iteration rather than at the end of the FL process will
be computationally very expensive for the FL task publisher,
and also the resulting global model, in that case, would not be
generalized rather than personalized in a case in each global
iteration the same client provides the best model. Lastly, the
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TABLE 3. High quality workers.
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FIGURE 8. FL process replay of Task 1 with the Top-κ clients.

final local model submission can be avoided for communi-
cation efficacy, in that case, the task publisher has to keep a
record of the last model submitted by each of the clients.

C. REPLAYING FL PROCESS
A replay of the FL process with only Top-κ clients is per-
formed to check whether the final global model achieved by
aggregating the local models of only Top-κ participants will
result in an acceptable model accuracy or not. This replay
process ensures the efficacy of Top-κ filtering procedure.
In the replay process, in each global round, all the Top-κ
clients have been polled for aggregation i.e. all 100 clients
participated in each round no random selection of clients. The
random selection of client participation is ignored to ensure
a fair comparison with the original experiments. Since in
the original experiments in each round almost 100 random
clients participate in each global round. Figure 8 presents
the replay of each experiment of Task 1, while Figure 9
presents the replay of each experiment of Task 2. The results
in Figure 8 and 9 indicate that the fairness of incentives that
will be provisioned to the Top-κ participant. In particular,
the last sub-plot of Figure 8 and 9 present the comparison
between the global test accuracy of the original experiment,
and the replay experiment. These subplots indicate for some
instances replaying the FL process with only Top-κ partici-
pant outperforms the accuracy achieved in the original exper-
iment, this ensure that Top-κ participant have high-quality
and useful training data for the said training task. Note that
while replaying in each experiment the data hosted by the

FIGURE 9. FL process replay of Task 2 with the Top-κ clients.

client in the original experiment and the replay experiment
is kept same for fair comparison.

D. MONETARY INCENTIVES
Before the task starts the task publishers of both Task 1 and
Task 2 has deposited 10 ether as an escrow for each client
totaling 2000 ethers for each of the tasks. On the comple-
tion of the task, the broker releases the escrow amount to
the clients’ ids listed in Table 3. Since the client determined
in Table 3 are the high-quality worker in the FL process,
these workers are shortlisted by Algorithm 2. To support the
intermediary business model of the broker to provide the FL
market platform, the broker deducts 2% on each successive
release of the escrow to the client devices. The clients’ id
listed in Table 3 received 9.8 ethers after finishing the task
since 2% is deducted by the broker as a fee. The broker fee
is a policy matter of the broker and can change from broker
to broker, in the case of multi-brokerage systems. On the
other hand, 1000 ethers are returned to each of the task pub-
lisher’s initial deposits of 2000 ethers. As the task publisher
is only willing to provide incentives to 50% of the subscribed
workers that possess high-quality training data.

V. CONCLUSION
Providing monetary incentives for monetizing the on-device
FL can increase the expectation of user devices for partic-
ipating in training the global predictive model. This paper
proposed FedMarket, a brokerage market framework that
enables multiple FL task publishers and mobile devices to
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co-exist for a set of diverse and varying learning tasks.
The proposed framework utilize cryptocurrencies as means
to trade FL services and employed a decentralized escrow
approach over the blockchain smart contract to provide mon-
etary incentives to FL worker with high-quality training
data for participating in an FL task. FedMarket employs
code offloading in mobile devices to enable customized FL
pipelines in mobile devices and mitigate the model hetero-
geneity inherent in varying and changing FL tasks published
by the task publishers. In the future, we will investigate the
proposed framework as a design of double auction-based
mechanisms for FLmarkets where task publishers andworker
devices co-exist for a set of diverse and varying learning tasks.
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