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ABSTRACT Federated learning (FL) is an on-device distributed learning scheme that does not require
training devices to transfer their data to a centralized facility. The goal of federated learning is to learn a global
model over several iterations. It is challenging to claim ownership rights and commercialize the global model
efficiently and transparently. Additionally, incentives need to be provided to ensure that devices participate
in the FL process. In this paper, we propose a smart contract-based framework called FL-Incentivizer,
which relies on custom smart contracts to maintain flow governance of the FL process in a transparent
and immutable manner. FL-Incentivizer commercializes and tokenizes the global model using FL-NFT (FL
Non-Fungible Token) based on the ERC-721 standard. FL-Incentivizer uses ERC-20 compliant FL-Tokens
to incentivize devices participating in FL. We present the system design and operational sequence of the
FL-Incentivizer. We provide implementation and deployment details, complete smart contract codes, and
qualitative evaluation of the FL-Incentivizer. After implementing FL-Incentivizer for a global iteration of a
Federated learning task, we showed the FL-NFT on OpenSea and an FL-Token for a learner on MetaMask.
FL-NFTs can be traded on markets such as OpenSea like other NFTs. While FL-Tokens can be transferred
in the same manner as other ERC-20-based tokens.

INDEX TERMS Federated learning, Ethereum, smart contracts, token, NFT, ERC-20, ERC-721, incentive,
model trading, model learning, DApp.

I. INTRODUCTION
Emerging wireless applications, such as haptics, digital
healthcare, and intelligent transportation systems, among oth-
ers generate an enormous volume of data [1], [2]. One can use
such data to train machine learning (ML) models for mak-
ing applications smarter. One way is to use centralized ML
based on training at a centralized location. However, users
as owners of isolated data are reluctant to share their private
data with a centralized repository for training centralized ML
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models. Federated Learning (FL) [3], [4], [5] is collaborative
on-device ML scheme that does not require training devices
to transfer their data to a central facility [6]. Instead, training
devices train local models on their local datasets. The local
models are sent to a centralized server for collaborative train-
ing of a global model over several global iterations.

As FL is usually an iterative task, a global model (GM)
on the model trading market can be more valuable if flow
governance and record-keeping of the entire FL process
(FLP) are open and transparent. The efficient and transparent
commercialization of the intellectual property of a GM for
an FL task (FLT) is a challenge. Moreover, training local
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models (LMs) consumes a significant amount of energy and
computing resources (CPU-cycles/sec). Therefore, devices
must be given an attractive incentive in response to their
contribution to the global model (GM) [7].

Records keeping will be revolutionized by blockchain
technology. Blockchain [8] is a distributed ledger with prop-
erties such as openness, provenance, anonymity, and trans-
parency. Smart contracts can be executed on the blockchain to
automate and govern the flow process for various applications
based on corresponding transactions in an immutable and
decentralized manner. Tokenization of assets can be carried
out with smart contracts to verify ownership and facilitate
value transfer automatically. Digital assets can be tokenized
as fungible and non-fungible tokens (NFT). Intellectual prop-
erty is a significant area of potential for NFT. It can be benefi-
cial for innovators seeking to commercialize their inventions
efficiently to use NFTs to promote transparency and liquidity.
The most popular standard used for NFTs is ERC-721. NFTs
can be categorized into dynamic NFTs and static NFTs [9].
A dynamic NFT is an NFT whose meta-data can be changed
over time by external entities while the meta-data of a static
NFT remains constant. The fungible tokens can serve as
equivalent to monetary rewards to encourage participation
from users. ERC-20 is the prevailing standard for fungible
tokens.

In this paper, a dedicated smart contract is responsible
to govern the FLP for an FLT. Moreover, we introduce
FL Non-Fungible Token (FL-NFT) and FL fungible tokens
(FL-Tokens) based on the ERC-721 standard and the ERC-20
standard, respectively. FL-NFT is a dynamic NFT and will
be employed as a method to claim ownership of the GM as
well as to claim royalties in the market for the usage of the
GM. FL-Tokens are used to incentivise devices participating
in FLP. A device can earn an FL-Token by doing a local model
submission (LMS) for the FLT. Both FL-NFT and FL-Tokens
are tradeable. Once a GM for an FLT is available, it can be
traded as an FL-NFT on the model trading market using the
ERC-721 standard. Details about the GM can be added to the
FL-NFT’s metadata. To the best of our knowledge, we believe
that our proposal, namely FL-Incentivizer, is the first to
utilize ERC-20 and ERC-721 to incentivize FL, by offering
FL-Tokens and FL-NFT. Our contributions are summarized
as follows:
• We propose a smart-contract-based FL-Incentivizer
framework for incentivizing the devices in the FL pro-
cess as well as claiming ownership rights to the GM.
The FL-Incentivizer promises that all transactions, logs,
and the provenance of all relevant data will be secure,
immutable, and transparent.

• We introduce FL-NFTs based on the ERC-721 standard
for GM trading and ownership claims.

• We introduce FL-Tokens based on the ERC-20 standard
for incentivizing the partaking devices in the FL process.

• We present the comprehensive system design of the
FL-Incentivizer. To manage and disseminate informa-
tion about the FL process, FL-Incentivizer includes the

TABLE 1. Summary of Abbreviations and Notations.

InterPlanetary File System (IPFS). We provide the
detailed operational sequence of the FL-Incentivizer
which also includes the procedure to transfer FL-NFT
to a new owner.

• We provide the complete implementation specifications,
smart contract code,1 deployment details and qualitative
evaluation for FL-Incentivizer.

The remainder of this article is laid out as follows:
Section II provides a related literature review for our study.
In Section III, we discuss the preliminaries relevant to our
work. Section IV presents the system design and operational
sequence of the FL-Incentivizer. Section V describes the
implementation details, deployment setup, and qualitative
evaluation of the FL-Incentivizer. In Section VI, we conclude
our paper. Table. 1 lists the summary of abbreviations and
notations used in this study.

II. RELATED WORKS
Few works considered incentive mechanisms for participants
in FL [10], [11], [12]. S. R. Pandey et al. [10] developed the
two-stage Stackelberg game to reward participants based on

1https://github.com/umermajeedkhu/FL-Incentivizer/tree/master/
contracts
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local training accuracy levels, dropout rates, and computing
costs with a Multi-Access Edge Computing (MEC) server
that maximizes its utility for a fixed number of global iter-
ations. In [11], Khan et al. highlighted key design aspects
for incentive mechanisms to enable FL at the network edge.
By using non-cooperative game theory, minimizing behavior
variance among clients and minimizing model training time
were the key objectives. T. Le et al. in [12] have devised
a reverse auction-driven incentive for mobile users to par-
ticipate in FL by selling their computing resources where
the base station acts as both the auctioneer and buyer. The
proposed auction allows mobile users to bid based on their
computation power, accuracy, and energy costs. This infor-
mation is used by the base station to determine potential
contributions, and then to determine the winners based on
maximum social welfare. In contrast to these works focus-
ing on the theoretical calculations of FL rewards due to
clients, our study is focused on how FL rewards are awarded
openly and transparently through blockchain-enabled ERC
tokens. The rest of this section will discuss research using
ERC-compliant tokens for a variety of application scenarios.

Crypto tokens are tradable digital assets secured through
crypto wallets. [13] categorizes the crypto tokens into secu-
rity tokens, payment tokens, and utility tokens. Multiple
application-level standards, known as Ethereum Requests
for Comment (ERC) [14], were adopted by the Ethereum
community for interoperability during interaction between
smart contracts as well as between Decentralized Appli-
cations (DApps) and smart contracts. ERC-20, ERC-721,
ERC-777, and ERC-1155 are the most popular ERC-based
token standards [13], [15] provided an overview, protocol
descriptions, available token standards, and an evaluation of
NFTs. In addition, they discussed the opportunities and chal-
lenges, and potential application scenarios for the widespread
adoption of NFTs. NFTs are a transparent, verifiable, tamper-
resistant, and tradeable way to claim ownership of underlying
physical or digital assets.

Using the provenance property in blockchain, Igarashi et al.
in [16] used NFTs to fight deep fakes on the Internet and trace
original and converted photographs. CryptoKitties [17] is the
pioneer blockchain-based game.Muthe et al. in [18] proposes
to use NFTs to tokenize in-game assets such that the objects
in the game can be linked to the NFTs through meta-data
of NFTs. The in-game inventory of players is linked to their
Ethereumwallets. Blockchain can also be utilized to tokenize
virtual assets and digital characters that are independent of
game service providers. Same characters or items can be used
in different (but compatible) games through the crypto wallet
integration. [19] used the NFTs to reward players in location-
based context-aware mobile gaming such as scavenger hunts
where users hunt for virtual assets in real-world locations both
indoor and outdoor. These virtual assets are tradable to other
players through NFT technology. Their proposal involves
game developers, game players, point of interest (POI) and
blockchain.

Valastin et al. in [20] proposed a car-sharing platform using
blockchain technology. ERC-721 was used to tokenize the
cars as NFT. ERC-721-based unlock tokens were issued to
unlock the cars for rentees. Unlock tokens are used by an
IoT device in the vehicle which verifies the unlock token
on the blockchain and unlocks the car for a ride. Users
are rewarded with ERC-20 tokens for using their platform.
Khezr and Mohan in [21] used the NFTs for the sale of
limited-edition digital artwork since this method allows the
artwork auction to reach a global market, as opposed to the
localized market of traditional in-person auctions. Agbesi
and Asante in [22] used the fungible tokens to represent
the vote count at the polling station in the blockchain based
e-voting framework. The proposed scheme allows polling
stations to produce a fungible token that represents the
vote count at the polling station. This is so that when the
tokens are transmitted to the next collation point, they cannot
be tempered. Thus, preventing counting fraud at collation
points.

M. Stefanovic et al. in [23] uses ERC-721 and ERC-20
to optimize transfers in land administration systems. Land
administration involves managing ownership history as well
as physical, spatial and topographic information about real
estate. ERC-721 based NFT represents a complete property.
While, with the help of ERC-20 tokens, multiple entities
can own a single property, and then can transfer 100% or
fewer shares to the new owner. R.W. Ahmad et al. in [24]
analyzed the use of blockchain in smart city waste man-
agement systems. They discussed Recerreum which is an
Ethereum-enabled project to reward citizens by incentivizing
them with ERC-20 based tokens for sorting and depositing
domestic waste in appropriate vending machines at waste
collecting centers.

III. PRELIMINARIES
The following section presents an overview of the technolo-
gies and platforms used to design the FL-Incentivizer frame-
work and to implement and evaluate it.

A. DECENTRALIZED APPLICATIONS
Software application is a piece of software designed to
accomplish a specific purpose. Usually, centralized appli-
cations are managed by a single entity. Unlike centralized
applications, Decentralized Applications (DApps) do not
have a single administrator or controller. Modern DApps
are self-governing applications and are composed of a front-
end interface, an application programming interface (API),
and a back-end. Smart contracts serve as the back-end of
DApps to execute the business logic with integrated access
control and store the state on the blockchain [25]. The
front-end UI of DApps may be rendered via a centralized
server or a decentralized file storage network like IPFS [26],
but the back-end of a decentralized application is always
decentralized.
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B. ETHEREUM AND SMART CONTRACTS
Ethereum [27] is a decentralized platform that runs bytecode
compiled by scripting languages on a Turing-complete virtual
machine. Smart contracts [28], [29] were devised in 1994 by
Nick Szabo [30], [31]. According to its original concep-
tion, smart contracts were intended to embed contractual
stipulations in hardware and software, making violating the
agreement costly to the breaching party [32]. Incorporating
smart contracts into the blockchain offers the possibility of
implementing a wide range of applications [33]. Smart con-
tracts are typically implemented using Solidity, a high-level
programming language [34]. A smart contract is executed on
Ethereumwhenever it is triggered by transactions via DApps.
There is a unique private key associated with each Externally
Owned Account (EOA) for signing transactions [35].

C. MetaMask
MetaMask [36] is an internet-browser-extension-based
Ethereum wallet. MetaMask enables users to hold EOAs and
sign transactions. Wallet generation algorithms enable Meta-
Mask to generate multiple EOAs off-chain. Each EOA has
a private key and a public address. MetaMask also provides
a seed phrase to recover EOAs in case of loss of password.
The seed phrase and private keys should be kept secret. Most
DApps connect to MetaMask automatically, following the
user’s approval. It allows users to see their assets, such as
ETH and Tokens, and transaction history. Users can import
and export private keys for EOAs.

D. HARDHAT
Hardhat [37] is an ‘‘Ethereum development environment for
professionals’’ to compile, deploy, debug, and test Solidity
smart contracts on Ethereum-based local networks, public
testnets, and mainnets. With Hardhat, developers can also
automate the repetitive tasks entailed in the development of
smart contracts and DApps [38]. A local Ethereum network
built specifically for developers is part of Hardhat. Hardhat
functionality is centered on Solidity debugging tools, such
as stack traces, console.log(), and error messages for failed
transactions.

E. ERC-20 AND FUNGIBLE TOKENS
ERC-20 is the first standard for fungible tokens to define a
standardized interface. The term ‘‘fungible token’’ refers to
the fact that they are interchangeable and mutually indistin-
guishable. Therefore, they can be exchanged for tokens of
the same type and value. Some popular ERC-20 tokens are
Tether (USDT), Shiba Inu (SHIB), Chainlink (LINK), and
MATIC. To govern token creation, exchange, and valuation,
ERC-20 defines two standard events besides nine standard
interfaces [39], [40]. The function names, parameter types,
and return values must strictly adhere to ERC-20 standards.
The minimum set of required functions by ERC-20 are
transfer, transferFrom, totalSupply, allowance, approve, and
balanceOf.

F. ERC721 AND NON-FUNGIBLE TOKENS
The ERC-721 token standard is applicable to NFT [41].
A NFT is indivisible, unique, and not interchangeable with
any other token [42]. Consequently, NFTs can tokenize
physical [43] or digital assets and identify them uniquely.
In essence, a NFT is a record that includes several fields.
These are the address of the NFT’s ‘wallet owner’, the NFT’s
ID, the Metadata Hash or possibly a link to a repository
that contains the Metadata. By relying on the cryptography
of the underlying blockchain, an NFT provides openness,
legitimacy, transparency, reliability, ownership, uniqueness
(scarcity), globalization, and constancy for an asset. In order
for NFTs to be interoperable with any NFT-based platform,
a standard interface ERC-721 is specified. A method called
tokenURI is included in ERC-721 to locate the metadata for
a given NFT.

G. TESTNETS
Smart contracts in production are deployed on public
networks called mainnets. However, deployment on main-
nets is costly. For cost-effective validation, verification,
and testing of smart contracts [38]: local networks, and
public testnets can be used. Similar to mainnets, testnets
have their own collection of nodes running the same pro-
tocol as the respective mainnet. The popular Ethereum
public testnets are Rinkeby [44] and Ropsten [45]. The
native currency, tokens, and NFTs on testnets have no mar-
ket value. Testnets generally have a lower transaction fee
than mainnets. Each testnet has several faucets, which can
transfer native currency, tokens, and NFTs to users as a
freebie.

H. FEDERATED LEARNING
FL is a collaborative technique for training a shared model
from geographically distributed local datasets with additional
computation at the edge [46], [47]. The FL server consoli-
dates LM updates from learners for each global iteration (GI)
to release the updated GM [11]. Below is a formulation of
the FLP:

Consider that an artificial neural network (ANN) can
classify input data into C classes, then we define [C] =
{1, . . . ,C}. Let †(ω) be the output function of the ANN andω

are the weights of the ANN.X is a compact Euclidean feature
space for the input data. [X ] can be mapped to the [Y ] = [C]
label space by †(ω). If the probability that class q is mapped
for data-point x ∈ X is given by pq(x,ω). Then for a data-
point {x, y}with one-hot encoded label, the cross-entropy loss
is [47], [48]:

fr (ω) = −
C∑
q=1

1y=q log pq(x,ω). (1)

Let Di be the data-set of the ith client (FLTraineri,t+1) in
GI t+1. The total data points inDi are ni = |Di|. Fk denotes
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the local loss and is formulated as [47]:

Fi(ω) =
1
ni

∑
r∈Di

fr (ω). (2)

The local gradient is then calculated as follows:

gi = ∇Fi (wt) where δi = |Di| gi. (3)

LM weights are updated at GI t + 1 as follows:

wit+1← wt − ηgi, ∀i. (4)

Let ψt+1 be the set of FL clients for GI t + 1. Then,

ψt+1 =
⋃

FLTraineri,t+1,∀i (5)

In FL settings, we calculate the global loss as follows:

f (w) =
∑
i∈ψt+1

ni
n
Fi(w). (6)

Subsequently, global gradient is calculated as [47]:

∇F (wt) =
∑
i∈ψt+1

ni
n
gi =

∑
i∈ψ δi∑

i∈ψt+1 |Di|
. (7)

The GMweights are updated at GI t+1 by utilizing Federated
averaging (FedAvg) [46], [47] as:

wt+1←
∑
i∈ψt+1

ni
n
wit+1 (8)

or

wt+1← wt − η∇F (wt) . (9)

During this FLP, the overall objective is to minimize the
global loss as follows [49]:

min
w
f (w). (10)

The FL-Incentivizer framework utilizes the aforemen-
tioned technologies to optimize its system design, sequence
operation, and implementation. In particular, FL is used to
update the GM which is tokenized as NFT via ERC-721,
learners get the reward through ERC-20 based tokens. The
smart contracts are deployed and tested on Ethereum testnets
via Hardhat. The entities in FL-Incentivizer also interact
with smart contracts by signing transactions in DApp via the
MetaMask wallets.

IV. PROPOSED FRAMEWORK
In this section, we describe the system design and operational
sequence of the FL-Incentivizer framework. For flow gov-
ernance in federated learning settings, FL-Incentivizer uses
customized smart contracts. To commercialize the global
model and to incentivize learners in a federated learning
process, FL-Incentivizer relies on ERC-721-based tokens and
ERC-20-based tokens respectively.

The system design of the FL-Incentivizer framework is
shown in Fig. 1. The system design consists of three layers
namely, the managerial layer, the distributed decentralized

layer, and the client layer. This system supports a Federated
Learning Task (FLT), where FLT is a deep learning or ML
task to train a GM using FL algorithms such as FedAvg or
FedProx. We denote the new FLT as FLT . For simplicity,
onwards we will consider only this particular FLT unless
mentioned otherwise as the process for all FLTs will be the
same. GMt denotes the GM for the t th GI of FLT .

The managerial layer includes a regulator, the FLTPCO,
and a Global Server. The regulator is the body responsible for
standardizing the FLmarketplace and ecosystem. The regula-
tor is in charge of the deployment of FLNFTC. The regulator
is also responsible for standardizing the meta-data for NFTs
in FLNFTC. The regulator is denoted as Regulator in our
study. The FL Task Publisher Contract’s owner (FLTPCO)
is a person/company who owns an FLTPC. When a person/
company wants to train an FL model, it will deploy a new
dedicated FLTPC.When an FL-NFT is traded, the new owner
of the FL-NFT will also own the corresponding FLTPC.
We denote the FLTPCO corresponding to FLT as FLTPCO.
The Global Server (GS) is run by FLTPCO. It is responsible
for aggregating the LMs to the GM for each iteration for the
FLT . It is denoted as GS in our study.
The distributed decentralized layer consists of FLNFTC,

FLTPC, FLTC, and IPFS. The FL-NFT Contract (FLNFTC)
is deployed for the whole FL market by the Regulator . The
whole framework has only one FLNFTC. It allows anyone
to mint a new FL-NFT for any FL task. The FLNFTC is
based on the ERC-721 standard and is denoted as FLNFTC .
The FL Task Publisher Contract (FLTPC) is deployed by a
person/company who wants to train an FL model. A new
FLTPC is deployed for every new FL task. The FLTPC is
responsible for orchestrating the whole FLP and is denoted
as FLTPC . The tokenId of FLNFT in FLTPC is denoted
as FLTPC .FLNFTID. The FL-Token Contract (FLTC) is the
contract deployed by the corresponding FLTPC at the start
of the FLP. The FLTC is based on the ERC-20 standard
and is denoted as FLTC . Each FLT has its seperate FLTC.
The corresponding FLTPC is responsible for minting new
FL-Tokens in the FLTC for the learners. As the FLP pro-
gresses, new FL-Tokens are awarded to participants. IPFS is
a decentralized file storage system that provides users with
content identifiers (CIDs) for content stored on it. An IPFS
system is a network of content-addressable storage which
means if two entities upload the same content, the CIDs will
be the same. We denote the IPFS as IPFS.

The client layer consists of several FL-Trainers.
An FL-Trainer is the partaking device/client in the FLP for
FLT . FLTraineri,t+1 denotes the ith client in the t + 1th GI
of FLT . FL-Trainer downloads the (t)th GM of FLT and
generates the LM by using its local dataset Di,t+1.
In addition to these entities, the system design involves

FL-NFT and FL-Tokens. FL-NFT is a dynamic NFT based on
the ERC-721 standard. Each FL-NFT is related to a particular
FLT . We denote the FL-NFT related to FLT as FLNFT .
Each FL-NFT is unique and assigned the Uniform Resource
Identifier (URI) denoted as tokenURI and pointing to the
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FIGURE 1. FL-Incentivizer: System Design.

Algorithm 1 Regulator Regulator
1: procedure DEPLOY_FLNFTC
2: Deploy FLNFTC
3: Set FLNFTC .owner = addrof (Regulator)
4: end procedure

meta-data of the latest GM of the FLT . The FL-NFT is
also assigned the IPFS hash (denoted as GMipfsHash) of
the latest GM of the FLT . The address of the corresponding
FLTPC is also stored and denoted as FLTPCAddress. The
tokenURI ,GMipfsHash, and FLTPCAddress for all FL-NFTs
are unique. The FL-NFTs themselves can be traded and are
an incentive for task publishers. Generally, FL-NFT is owned
by FLTPCO through its crypto wallet. An FL-Token is an
ERC-20-based token awarded to devices participating in FLP.
All FL-Tokens minted by the same FLTC are fungible to each
other. We denote an FL-Token as FLToken. An FL-Token is
generally owned by FL-Trainer through its crypto wallet.

The aforementioned entities are an integral part of
FL-Incentivizer. Now, our discussion will focus on the opera-
tional sequence of the FL-Incentivizer as illustrated in Fig. 2.
The simplified sequence steps are as follows:

• Step 1: The Regulator deploys the FLNFTC for the FL
market. The owner of the FLNFTC is set to the address
of Regulator . This step is summarized in procedure
DEPLOY_FLNFTC of Algorithm 1.

• Step 2: For the FLT , FLTPCO will deploy the FLTPC .
The owner of the FLTPC is set to the address of
FLTPCO. Moreover, FLTPC is also paused. The paused
status of FLTPC means that most of the FLTPC oper-
ations are not yet ready. This step is summarized in
procedure DEPLOY_FLTPC of Algorithm 2.

• Step 3: During the deployment of FL task Publisher
Contract FLTPC . The FLTPC will deploy the FL-token
ContractFLTC forFLT . The owner ofFLTC is set to the
address ofFLTPC . This step is summarized in procedure
DEPLOY_FLTC of Algorithm 4.

• Step 4: The FLTPCO starts the procedure
CREATE_FLNFT in Algorithm 2. In this procedure, the
FLTPCO generates the initial GM weights for FLT and
uploads it to IPFS. The resulting hash is GMipfsHash.
This becomes GMt where t = 0. The FLTPCO cre-
ates the related files for FLT such as FL task guide-
lines, LMS guidelines, LMS reward criteria, and any
other custom details; and uploads them to IPFS. The
FLTPCO also creates a representing image for FL-NFT,
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FIGURE 2. FL-Incentivizer: Operational Sequence.
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Algorithm 2 FL Task Publisher Contract’s Owner FLTPCO
1: procedure DEPLOY_FLTPC
2: Deploy FLTPC
3: Set FLTPC .owner = addrof (FLTPCO)
4: Call FLTPC .pause()
5: Call FLTPC .DEPLOY_FLTC
6: end procedure

Input: FLTPC
1: procedure CREATE_FLNFT
2: Make GMt ▷ t = 0
3: GMipfsHash = Upload GMt → IPFS
4: Make GM_Meta_Datat for GMt
5: tokenURI = Upload GM_Meta_Datat → IPFS
6: if (FLTPC .FLNFTID == 0) then
7: Call FLTPC .createFLNFT (GMipfsHash,
tokenURI )

8: end if
9: end procedure

Input: FLTPC
1: procedure START_LMSubmissions
2: Call FLTPC .start_LMSs
3: end procedure

Input: FLTPC
1: procedure Close_LMSubmissions
2: Call FLTPC .close_LMSs
3: end procedure

Input: FLTPC , t + 1
1: procedure Process_LMSubmissions
2: foreach FLTraineri,t+1 in

FLTPC.Download_LMSx(t + 1)
3: FLTraineri,t+1 = Call

FLTPC.Download_LMS(t + 1, addrof (FLTraineri,t+1))
4: Call FLTPC .ADRLMS(addrof (FLTraineri,t+1),
t + 1,LMStatusi,t+1)

5: end foreach
6: Call FLTPC .setLMSADRC(t + 1)
7: end procedure

Algorithm 3 FL Task Publisher Contract’s Owner
FLTPCO - Continued

Input: FLTPC , t + 1
1: procedure Update_GM
2: Make GMt+1 using (8)
3: GMipfsHash = Upload GMt+1→ IPFS
4: Make GM_Meta_Datat+1 for GMt+1
5: tokenURI = Upload GM_Meta_Datat+1→ IPFS
6: Call FLTPC .GMupdate(GMipfsHash, tokenURI )
7: end procedure

which is uploaded to IPFS. These details are added to
a JSON-formatted meta-data file. The meta-data also
includes the addresses of FLTPC , FLTC , and FLNFTC .
The meta-data is denoted as GM_Meta_Datat . A sam-
ple meta-data file can be seen from Appendix I. The

Algorithm 4 FL Task Publisher Contract FLTPC
1: procedure DEPLOY_FLTC
2: Deploy FLTC
3: Set FLTC .owner = addrof (FLTPC)
4: end procedure

Input: tokenURI , GMipfsHash
1: procedure createFLNFT
2: tokenId = call FLNFTC .mintFLNFT
3: Set FLTPC .FLNFTID = tokenId
4: end procedure
1: procedure start_LMSs
2: if FLTPC .LMSAccepting == false then
3: Set FLTPC .LMSAccepting = true
4: Emit FLTPC .LMSstarted(t + 1);
5: end if
6: end procedure

Input: LMipfsHash, LModelURI , t + 1,
addrof (FLTraineri,t+1)

1: procedure submitLocalModel
2: if FLTPC.Validate_LMS(LMipfsHash, LModelURI ,
t + 1, addrof (FLTraineri,t+1) then

3: Call FLTPC.Add_LMS(LMipfsHash,
LModelURI , t + 1, addrof (FLTraineri,t+1 )

4: end if
5: end procedure
1: procedure close_LMSs
2: if FLTPC .LMSAccepting == true then
3: Set FLTPC .LMSAccepting = false
4: Emit LMSclosed(t + 1)
5: Set LMSC[t + 1] = true;
6: end if
7: end procedure

Input: addrof (FLTraineri,t+1), t+1, LMStatusi,t+1
1: procedure ADRLMS
2: if LMStatusi,t+1 == Approval then
3: CallFLTC .mintFLToken(addrof (FLTraineri,t+1))
4: Set LMSi,t+1.LMStatus == Rewarded
5: else
6: Set LMSi,t+1.LMStatus == Denied
7: end if
8: end procedure

GM_Meta_Datat is uploaded to IPFS. The result-
ing hash is tokenURI . Afterwards, the FLTPCO
initiates procedure createFLNFT in Algorithm 4.
Subsequently, the FLTPC mints the FLNFT on
FLNFTC for FLTPCO using procedure mintFLNFT in
Algorithm 6.

• Step 5: The FLTPCO then starts the procedure
START_LMSubmission in Algorithm 2 to start the
LMSs on the FLTPC . This initiates procedure
start_LMSs in Algorithm 4. This procedure checks
if FLTPC .LMSAccepting is set to false or not.
The FLTPC .LMSAccepting == true indicates that
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Algorithm 5 FL Task Publisher ContractFLTPC - Continued
Input: t + 1

1: procedure setLMSADRC
2: Set LMSADRC[t + 1] = true
3: end procedure

Input: t + 1, GMipfsHash, tokenURI
4: procedure GMupdate
5: setGMipfsHashF = Call
FLNFTC .setGMipfsHash(GMipfsHash,FLNFTID)

6: setTokenURIF = Call
FLNFTC .setTokenURI (tokenURI ,FLNFTID)

7: if setTokenURIF && setGMipfsHashF then
8: Emit GMupdated(t +

1,GMipfsHash, tokenURI );
9: Set FLTPC .tokenURI = tokenURI

10: Set FLTPC .GMipfsHash = GMipfsHash
11: Set GIC[t + 1] = true
12: end if
13: end procedure

FLTPC is currently accepting LMSs and FLTPC .
LMSAccepting == false indicates that LMSs are closed
in FLTPC . If FLTPC .LMSAccepting is false, the respec-
tive procedure changes FLTPC .LMSAccepting to true
and emits the event LMSstarted(t + 1) where t + 1 is
GI for which LMSs are just started. FL-Trainers listen
for event LMSstarted(t + 1) for submitting their LM
updates.

• Step 6: The FLTraineri,t+1 then starts the procedure
SUBMIT_LMS in Algorithm 7 to start the LMSs on
FLTPC . For this, the FLTraineri,t+1 gets the latest GM
hash FLTPC .GMipfsHash from FLTPC , downloads the
latest GM GMt from IPFS using FLTPC .GMipfsHash,
and calculates the local model LMi,t+1 on local dataset
Di,t+1 using [4]. The FLTraineri,t+1 then uploads
LMi,t+1 to IPFS to get LMipfsHash. The FLTraineri,t+1
also makes Local_Model_URI which is meta-data
JSON for LMi,t+1. The FLTraineri,t+1 then uploads
Local_Model_URI to IPFS to get LModelURI . After-
wards, FLTraineri,t+1 calls FLTPC .submitLocalModel
to submit its LM to FLTPC . The FLTPC may have
hard-coded the limit for the number of LMSs for GI
t + 1 allowed.

• Step 7: The procedure submitLocalModel in Algorithm 4
is triggered by FLTraineri,t+1. The local model sub-
mission LMSi,t+1 is validated by FLTPC.Validate_
LMS function. The FLTPC.Validate_LMS function
may not accept the LMS if the limit has been reached
for the t + 1 GI. If the LMS is valid, the LMSi,t+1 is
added to the LMSs against the GI t+1 and the address of
FLTraineri,t+1 denoted as addrof (FLTraineri,t+1)
by function FLTPC.Add_LMS. The LM status
LMSi,t+1.LMStatus is set as Submitted.

Algorithm 6 FL-NFT Contract FLNFTC
Input: tokenURI , addrof (FLTPC), GMipfsHash,

addrof (FLTPCO)
Output: tokenId

1: procedure mintFLNFT
2: tokenId =Mint FL-NFT for FLTPCO
3: Set FLNFT .tokenURI = tokenURI
4: Set FLNFT .GMipfsHash = GMipfsHash
5: Set FLNFT .FLTPC = addrof (FLTPC)
6: end procedure

Input: GMipfsHash, FLNFTID
1: procedure setGMipfsHash
2: if FLTPC.Validate_GMipfsHash(GMipfsHash,
FLNFTID then

3: Set GMipfsHashes[FLNFTID] = GMipfsHash
4: Ascertain Unique GMipfsHashes
5: Emit GMipfsHashset(FLNFTID,GMipfsHash)
6: Return true
7: else
8: Revert
9: end if
10: end procedure

Input: tokenURI , FLNFTID
1: procedure setTokenURI
2: if FLTPC.Validate_TokenURI(tokenURI , FLNFTID

then
3: Set tokenURIs[FLNFTID] = tokenURI ;
4: Ascertain Unique tokenURIs
5: Emit TokenURIset(FLNFTID, tokenURI )
6: Return true
7: else
8: Revert
9: end if
10: end procedure

• Step 8: The FLTPCO closes the LMSs for current GI
by procedure CLOSE_LMSubmission of Algorithm 2.
This initiates procedure close_LMSs in Algorithm 4.
This procedure checks if FLTPC .LMSAccepting is set
to false or not. If FLTPC .LMSAccepting is true, this
procedure changes FLTPC .LMSAccepting to false, sets
LMSC[t+1] to true to indicate LMSs are closed for t+1,
and emits the event LMSclosed(t + 1) where t + 1 is GI
for which LMSs are just closed. The FL-Trainers listen
to the event LMSclosed(t + 1) and drop further LMSs.

• Step 9: The FLTPCO start the procedure
Process_LMSubmissions in Algorithm 2. In this pro-
cedure, FLTPCO first downloads the addresses of LM
submitters by invoking function Download_LMSx(t +
1). Afterwards, for each FLTraineri,t+1 in FLTPC.
Download_LMSx(t + 1), FLTPCO downloads the cor-
responding the LMS denoted as LMSi,t+1 by call-
ing FLTPC.Download_LMS(t + 1,FLTraineri,t+1). The
FLTPCO checks LMSi,t+1 and approves or denies it
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by calling procedure FLTPC .ADRLMS of Algorithm 4.
Where LMStatusi,t+1 ∈ {Approved,Denied} is the
respective decision for LMSi,t+1 and ADRLMS stands
for Approval, Disapproval, Reward for LMS. If the
LMSi,t+1 is ‘‘Approved’’, FLTPC .ADRLMS invokes
procedure FLTC .mintFLToken of Alogorithm 8 to mint
FL-Token for the corresponding FLTraineri,t+1. Lastly,
FLTPCO executes procedure FLTPC .setLMSADRC(t+
1) of Algorithm 5 which sets the LMSADRC(t + 1) flag
for GI t + 1 to indicate that the LMSs for respective GI
have been approved, denied and rewarded.

• Step 10: The FLTPCO starts the procedureUpdate_GM
in Algorithm 3. Let’s denote the approved LMSs in
the previous steps as LMSî,t+1. The FLTPCO com-
putes the GMt+1 using [8], and uploads it to IPFS.
The resulting hash is GMipfsHash. The FLTPCO also
updates the representing image for FL-NFT, which
is uploaded to IPFS. These details are updated in
the meta-data JSON file. The meta-data of GMt+1
for GI t + 1 is denoted as GM_Meta_Datat+1. The
GM_Meta_Datat+1 is uploaded to IPFS. The resulting
hash is tokenURI . Subsequently, the FLTPCO trig-
gers procedure FLTPC .GMupdate in Algorithm 5. The
FLTPC .GMupdate calls procedure FLNFTC .setGMipfs
Hash in Algorithm 6 and procedureFLTPC .setTokenURI
in Algorithm 6 to set GMipfsHash and tokenURI
of FLNFT respectively. It is necessary to men-
tion that only registered FLTPC (at the minting of
FLNFT ) can execute FLNFTC .setGMipfsHash and
FLNFTC .setTokenURI for particular FLNFTID. The
FLNFTC .setGMipfsHash then calls function FLN-
FTC.Validate_GMipfsHash to validate the submitted
GMipfsHash and subsequently set the GMipfsHash of
FLNFT . The function FLNFTC.Validate_GMipfsHash
executes a code to ascertain the uniqueness of
GMipfsHash for all FL-NFTs. Similarly, the FLNFTC .
setTokenURI invokes function FLNFTC.Validate_
TokenURI to validate the submitted tokenURI and sub-
sequently set the tokenURI of FLNFT . The function
FLNFTC.Validate_TokenURI execute a code to ascer-
tain the uniqueness of tokenURI for all FL-NFTs. It is
necessary to mention that all FL-NFTsmust have unique
GMipfsHashes and tokenURIs at a time. Afterwards, the
FLTPC emits the event FLTPC .GMupdated . Finally,
the FLTPC flags the GIC[t + 1] to indicate that the GI
t + 1 is completed.

Step 1 is done only once for the whole FL model trading
market. However, for every instance of FLT , Steps 2-4 of the
above sequence are repeated to set up the FLP environment.
While, for each GI t + 1 of FLT , Steps 5-10 are repeated.
FL-NFT trading involves transferring the FL-NFT from its
current owner to the buyer. To transfer the FLNFT to a new
owner, the FLTPCO_Transfer procedure in Algorithm 9 is
started by the current owner, which first closes the LMSs
by calling FLTPC .close_LMSs. Then, it pauses the FLTPC .

Algorithm 7 FL-Trainer FLTraineri,t+1
Input: FLTPC , t

1: procedure SUBMIT_LMS
2: Get FLTPC .GMipfsHash
3: DownloadGMt← IPFS using FLTPC .GMipfsHash
4: Generate LMi,t+1 using (4)
5: LMipfsHash = Upload LMi,t+1→ IPFS
6: Make Local_Model_URI for LMi,t+1
7: LModelURI = Upload Local_Model_URI→ IPFS
8: Call FLTPC .submitLocalModel(LMipfsHash,
LModelURI , t + 1)

9: end procedure

Algorithm 8 FL Token Contract FLTC
Input: addrof (FLTraineri,t+1)

1: procedure mintFLToken
2: d = Call FLTC .decimals()
3: Mint 1 ∗ 1018 FLT for addrof (FLTraineri,t+1)
4: end procedure

Algorithm 9 FL-NFT’s Transfer
Executor: current_FLTPCO Input: new_FLTPCO

1: procedure FLTPCO_Transfer
2: Call FLTPC .close_LMSs
3: Pause FLTPC
4: Transfer FLNFT to new_FLTPCO
5: end procedure

Executor: new_FLTPCO
1: procedure FLTPCO_Unpause
2: Unpause FLTPC
3: end procedure

FIGURE 3. Inheritance graph of the FTPC and FLTC.

Afterward, it transfers the FLNFT to the new owner. The
new owner may start the procedure FLTPCO_Unpause in
Algorithm 9 to unpause FLTPC .
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TABLE 2. Parameters.

FIGURE 4. Inheritance graph of the FLNFTC.

V. IMPLEMENTATION, DEPLOYMENT AND EVALUATION
This section discusses the implementation, deployment, and
evaluation of the FL-Incentivizer.

A. IMPLEMENTATION AND DEPLOYMENT
We developed our contracts in Solidity. The inheritance
graph of the contracts is generated using Surya [50].
The inheritance graph of FLTPC and FLTC is shown in
Fig. 3. While, Fig. 4 shows inheritance graph for FLNFTC.
The inheritance graphs show that the FLTPC is inher-
ited from the ‘‘Ownable contract’’ [51] as well as the
‘‘Pausable contract’’ from OpenZeppelin [52]. The FLNFTC
is derived from ERC721Enumerable [53], Pausable and
Ownable contracts from OpenZeppelin. Similarly, FLTC is
inherited from OpenZeppelin ERC-20 implementation [54],
Pausable and Ownable contracts. Fig. 13 in Appendix
shows a simplified class diagram for FLTPC, FLNFTC,
and FLTC.

FIGURE 5. Gas Price for deployment of FLNFTC and FLTPC on Rinkeby and
Ropsten.

We compiled our smart contracts using Hardhat using the
command

npx hardhat compile

We deployed our smart contracts using Hardhat and
JavaScript using the commands
npx hardhat run script/deploy.js

--network rinkeby
and
npx hardhat run script/deploy.js

--network ropsten
on the Rinkeby and the Ropsten network respectively.

We also verified our smart contracts using
npx hardhat verify --network rinkeby

contract_address arg1
for the Rinkeby network using ETHERSCAN_API_KEY [55].

We simply used the MNIST dataset for training of the
GM. As the scope of the paper is to build a generic ecosys-
tem for incentivization of FL model training and trading
using fungible tokens and NFTs. So we will skip model
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FIGURE 6. Gas used, transaction fee in ETH and USD for deployment of FLTPC and FLNFTC.

FIGURE 7. Average gas used, gas price, transaction fee (in ETH and USD) for various transaction on FLTPC.
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FIGURE 8. Transaction executed for a complete GI on FLTPC (https://rinkeby.etherscan.io/address/0xdC63FB6f6a11c358D06Cf05A1049eC04cf1e5bc1).

FIGURE 9. Minting of FL-NFT to FLTPCO by transaction ‘Create FLNFT’ (mintFLNFT)
(https://rinkeby.etherscan.io/tx/0x68fb7b7a448eaca40667a4fc890198f7f9de4e18aa12077f88b104d68864a2fb).

architecture, accuracy, and data-distribution-related details
here. The EIP-170, introduced with the Spurious Dragon
hard-fork [56], places a 24 KB limit on smart contracts.
By optimizing our smart contracts and encoding the error
messages [57], we have reduced the size of the smart contract
byte-codes and, in turn, reduced the gas used for deployment
and execution of smart contracts. When an externally owned
account (EOA) sends some transaction to the network, it sets

the gas limit for the transaction. The gas limit is the maximum
gas that can be used to execute the transaction. The EOA
pays a maximum transaction fee (MaxTxFee) for executing
the transaction as determined below:

MaxTxFee = GasPrice ∗ GasLimit. (11)

The actual transaction fee depends upon the gas price
and gas used for executing the transaction and can be
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FIGURE 10. Eventlog of transaction ‘GMupdate’ showing events TokenURIset and GMipfsHashset
(https://rinkeby.etherscan.io/tx/0x08c18089f0a3010373e16259b91f5591c22deda0c0980cb4fb0d77e785240697#eventlog).

FIGURE 11. Representative image of FL-NFT on OpenSea.2

computed as

Transaction_fee = Actual_gas_used ∗ Gas_price. (12)

The residual MaxTxFee − Transaction_fee is returned to
the EAO. The transaction fee for the deployment of smart
contracts in USD is calculated for 1 ETH = 3,250 USD.
The gas price for the deployment of FLTPC and FLNFTC on
Rinkeby and Ropsten is approximately 1.000000053 Gwei
and 2.500000027 Gwei respectively as shown in Fig. 5.
Fig. 6 illustrates the gas consumption and transaction fee (in
ETH and USD) for the deployment of FLTPC and FLNFTC.
FLTPC deployed the FLTC via an internal transaction.

2Could See FL-NFT on OpenSea at https://testnets.opensea.io/assets/
0x620ef4e1cde7f1841538279e6baf1d1b96f6e6c4/1 before the Ethereum
Merge. Now see property ‘image’ for URL of representative image
of FL-NFT from meta-data of FL-NFT at https://ipfs.io/ipfs/QmWxBLJ
zaawXYqPFf54KPWnRX5yXwNZRPYpx1dBHTSgiYp

Therefore, the gas consumption and the transaction fee for
the deployment of FLTC are included in the gas used and
transaction fee for the deployment of FLTPC, respectively.
Fig. 6 shows that the gas used for deployment of respective
smart contracts is the same on both Rinkeby and Ropsten as it
depends upon the byte-code of the contract. Fig. 7 shows the
average gas consumption, gas price, and transaction fee (in
ETH and USD) for various transactions executed on FLTPC
on Rinkeby.

Fig. 8 shows the list of transactions on FLTPC. The
transaction ‘Create FLNFT’ (mintFLNFT) is executed by
FLTPCO only once at the start. Transactions ‘Start_LMSs’,
‘Close_LMSs’, ‘setLMSADRC’, and ‘GMupdate’ are exe-
cuted once per GI. Transactions ’SubmitLocalModel’ and
’ADRLMS’ are executed multiple times per GI according to
the number of available FL-Trainers. As the transaction list is
immutable, open, and transparent, this can improve the FLP
flow governance and record-keeping.
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FIGURE 12. Transfer of FL-Token (symbol: FLT) to FLTrainer1 for contributing a LMS for FLT
(https://rinkeby.etherscan.io/tx/0x3668d209780b1518e97133c8c72b583227b38b39f8a7922b528eb371f3013081).

Fig. 9 shows the minting of FL-NFT to FLTPCO by
transaction ‘Create FLNFT’ (mintFLNFT). The input data
to the transaction include the _tokenURI and _GMipf-
sHash. This indicates the tokenization of the GM as NFT.
Fig. 10 displays the events emitted by transaction GMup-
date. Event TokenURIset indicates that the URI of FLNFT
with FLNFTID = 1 has been updated. Similarly event
GMipfsHashset indicates that the IPFS hash of FLNFT with
FLNFTID = 1 has been updated. Fig. 11a and Fig. 11b
depicts the representative image of FL-NFT for FLT on
OpenSea for t = 0 and t = 1, respectively. The representative
image and tokenURI of FL-NFT on OpenSea can be updated
after every GI t . Fig. 12 shows a transfer of FL-Token to
FLTrainer1 for contributing a LMS for FLT. Fig. 14 shows the
same FL-Token in a MetaMask wallet of FLTrainer1. Table 2
lists the EOA address of Regulator, FLTPCO, FLTrainer1 as
well as the contract address of FLTPC, FLTC, FLNFTC for
both Rinekeby [44] and Ropsten [45]. Etherscan Explorer for
FLTPC, FLTC, and FLNFTC lists the internal and external
transaction logs, verified contract code, and event log.

B. QUALITATIVE EVALUATION
1) FL-TOKENS
The FL-Tokens minted in the respective FLTC by a particular
FLTPC show how many learners have participated in the
FLP of this FLT. The expression FLTC .totalSupply()/1018 gives
the number of FL-Tokens minted. This is a very effective
way to establish the potential of FLT in the market. The
FL-Tokens themselves are tradable and are an incentivization
for learners.

2) FL-NFT
The FL-NFT is minted for a particular FLT. The FNFTC and
corresponding FLTPC can show the complete history of the
FL-NFT (for a particular tokenId=FLTPC.FLNFTID) such

as tokenURI and GMipfsHash updates via the transaction
log or events log. The ownership of FL-NFT is recognized
as complete ownership and royalty rights of the correspond-
ing FLT, GM, and its updates by the Regulator . By trading
FL-NFT, these rights are transferred to the new owner.

3) FLTPC
The FLTPC can cater to continuous FLP for the FLT. The
state, transaction log, and event log of FLTPC also show the
complete history of the FLT, interaction with FLNFTC, and
corresponding FLTC. The trading of FL-NFT also automati-
cally transfers ownership of the respective FLTPC to the new
owner.

4) FLTPCO
The FLTPCO is responsible forminting the FL-Tokens for the
partaking devices after approving their LM contributions.
The FLTPCO is also responsible for correctly updating the
GM using FLTPC.GMupdate. These processes rely on the
honesty of FLTPCO. The best strategy for FLTPCO is to be
honest, and to approve and reward only the correct LMSs. The
number of FL-Tokens minted indicated how many learners
were involved in the whole FLP. hus, the larger the total
supply of FLTC, the higher the market value of corresponding
FL-NFT. Consequently, the reliability of GM associated with
FL-NFT is also increased.

VI. CONCLUSION
The federated learning process (FLP) requires incentives to
encourage device participation. Moreover, claiming owner-
ship of the FL global model, and demonstrating its reliabil-
ity, are cumbersome processes. The paper presents a smart
contract-based FL-Incentivizer framework for incentivizing
the participation of devices in FLP and claiming ownership
rights to a global model. As part of the FL-Incentivizer frame-
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FIGURE 13. Simplified UML diagram for FLTPC, FLNFTC, and FLTC.3

work, transactions, logs, and the provenance of all relevant
data are secured, immutable, and transparent. We present
FL-NFT, a global model trading and ownership claim pro-
tocol built upon the ERC721 standard. Tradable FL-Tokens
based on the ERC-20 standard are introduced to reward
devices participating in FLP. FL-Incentivizer includes the
InterPlanetary File System (IPFS) for storing and sharing
FLP information. Detailed implementation details, smart

3Detailed UML diagram for FLTPC, FLNFTC, and FLTC at
https://github.com/umermajeedkhu/FL-Incentivizer/tree/master/uml

contract code, and evaluation results are presented in this
study. The number of tokens minted in FL-Token can be
interpreted as a measure of the reliability of the FL global
model.

APPENDIX I. SAMPLE META-DATA OF FL-NFT
See the meta-data of FL-NFT at https://ipfs.io/ipfs/
Qma8m5GhUxRRq6iQLwfqWJmMvDKzWZFnnuQW21
BhyRvBR8.
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FIGURE 14. MetaMask showing FL-Token (symbol: FLT) earned by
FLTrainer1 for contributing a LMS for FLT.

APPENDIX II. SMART CONTRACTS UML DIAGRAM
See Fig. 13.
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