
1

DAO-FL: Enabling Decentralized Input and Output
Verification in Federated Learning with

Decentralized Autonomous Organizations
Umer Majeed, Sheikh Salman Hassan, Member, IEEE, Zhu Han Fellow, IEEE, and Choong Seon Hong, Fellow, IEEE

Abstract—In the rapidly evolving landscape of Web3 and
blockchain technologies, decentralized autonomous organizations
(DAOs) have emerged as innovative structures that operate
autonomously through blockchain and smart contracts, elimi-
nating the need for centralized control. The federated learning
(FL) process, akin to an information flow under structured
transparency, involves local models (LMs) as inputs and the
global model (GM) as the output for each global iteration. The
lack of transparency and security in traditional FL systems can
be attributed to the centralized validation of LMs and GM
updates. In this paper, we propose DAO-FL, a smart contract-
based framework that leverages the power of DAOs to address
these FL challenges. DAO-FL introduces the concept of DAO
Membership Tokens (DAOMTs) as a governance tool within a
DAO. DAOMTs play a crucial role within the DAO, facilitating
members’ enrollment and expulsion. Our framework incorpo-
rates a Validation-DAO for decentralized input verification (DIV)
of the FL process, ensuring reliable and transparent validation of
LMs. Additionally, DAO-FL employs a multi-signatures approach
facilitated by an Orchestrator-DAO to achieve decentralized GM
updates, and thus decentralized output verification (DOV) of the
FL process. We present a comprehensive system architecture,
detailed execution workflow, implementation specifications, and
qualitative evaluation for DAO-FL. Evaluation under threat
models highlights DAO-FL’s out-performance against traditional
centralized-FL, effectively countering input and output attacks.
DAO-FL excels in scenarios where DIV and DOV are crucial,
offering enhanced transparency and trust. In conclusion, DAO-
FL provides a compelling solution for FL, reinforcing the
integrity of the FL ecosystem through decentralized decision-
making and validation mechanisms.

Index Terms—Decentralized autonomous organization, De-
centralized input verification, Decentralized output verification,
Federated Learning, DAO membership tokens, Non-transferable
tokens, Smart contract, Soul-bound tokens, Structured trans-
parency.

I. INTRODUCTION

IN the dynamic landscape of Web3 and blockchain [1]
technology, several disrupting technologies have emerged,

transforming the way we interact and conduct digital trans-
actions. Decentralized autonomous organizations (DAOs) [2]

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

U. Majeed, S. S. Hassan and C. S. Hong are with the Department of
Computer Science & Engineering, Kyung Hee University, Yongin-si 17104,
South Korea.

Z. Han is with the Electrical & Computer Engineering Department, Uni-
versity of Houston, Houston, TX 77004, USA and Department of Computer
Science & Engineering, Kyung Hee University, Yongin-si 17104, South Korea.

represent innovative organizational structures that operate au-
tonomously through blockchain technology and smart con-
tracts [3], [4], eliminating the need for centralized control.
DAOs have the potential to revolutionize traditional hier-
archical management paradigms, reducing communication,
administration, and collaboration expenses within organiza-
tions [5]. Another groundbreaking innovation is Soul-Bound
tokens (SBTs) [6], [7], which are non-transferable tokens
(NTTs) intrinsically linked to specific addresses, serving as
unique digital identities and reputation indicators. SBTs pro-
vide enhanced security and authenticity in various applica-
tions, including identity verification and exclusive ownership
rights. Furthermore, Non-fungible Tokens (NFTs) [8], [9] have
emerged as a game-changer in the art and gaming industries.
These tokens represent distinct and indivisible digital assets,
enabling provable ownership and authenticity for digital art,
collectibles, and virtual assets.

Federated learning (FL) [10]–[13] as a distributed artificial
intelligence (DAI) technique facilitates the collaborative learn-
ing of a highly accurate deep learning model by aggregating
local models (LMs) into a global model (GM) through the
FL process. The FL process can be viewed as an information
flow within the context of structured transparency (ST) [14],
where LMs serve as inputs and the GM is the output for each
global iteration (GI) [15]. Input and output verification are
vital components in ST. Input verification (IV) validates in-
formation flow inputs, ensuring alignment with requirements.
Output verification (OV) guarantees output integrity, validating
policy compliance and preventing tampering. Decentralized
input verification (DIV) and Decentralized output verification
(DOV) distribute these verification processes across multiple
entities, eliminating reliance on a single entity. In FL, IV
confirms compliance of submitted LMs with process policies,
while OV ensures adherence of the produced GM to process
policies.

FL is a resource-intensive process that typically demands
days of training for the initial deployable GM and continuous
updates over extended periods. In traditional “centralized FL”
setups, LMs are validated by a central server, which aggregates
them to produce the GM. However, this centralized approach
poses vulnerabilities, as a single erroneous GM update can
potentially compromise the accuracy and integrity of the entire
FL process. To tackle these challenges, in this study, we
propose the DAO-FL framework, which integrates DAOs and
a multi-signature [16] contract with FL to enable DIV and
DOV of the FL process. By employing DAOs, we distribute

2

the verification process across multiple participants, ensuring
transparency and mitigating the risk of central authority ma-
nipulation. The following is a summary of our contributions:
• We introduce DAO Membership Tokens (DAOMTs)

which serve as a means for governance in systems
utilizing DAOs.

• We design decentralized schemes for member enrollment
and member expulsion within a DAO.

• We present a comprehensive system architecture and
detailed execution workflow of DAO-FL, a framework
powered by DAOs and smart contracts for partially de-
centralized orchestration of the FL process. The VDAO
ensures DIV by validating and rewarding local model
uploads (LMUs). Additionally, DAO-FL utilizes a multi-
signature contract through the ODAO to ensure DOV by
validating the GM updates.

• We present comprehensive implementation and deploy-
ment specifications, including the smart contract code1.
Additionally, we provide evaluations of DAO-FL con-
cerning threat models, qualitative assessments, and case
studies. Furthermore, we discuss DAO-FL’s applicability,
limitations, and future direction.

The remaining sections of this article are structured as
follows: Section II provides a comprehensive review of re-
lated literature on our study. In Section III, we explore the
relevant preliminaries necessary for understanding our work.
The system architecture and execution workflow of DAO-FL
is expounded upon in Section IV. Implementation specifica-
tions, deployment details, evaluation on threat models, and
qualitative evaluation of DAO-FL can be found in Section
V. This section also covers the discussion on applicability,
limitations, future directions of DAO-FL, and practical case
studies. Finally, we conclude our paper in Section VI. Table I
lists the abbreviations, symbols, and their descriptions.

II. RELATED WORK

Bluemke et al. in [18] explored the significance of data
privacy-enhancing technologies in the realm of AI governance.
They highlighted the progress made in balancing privacy and
performance during data exchange and analysis, emphasizing
the value of ST. Thus, enabling controlled information flow,
addressing who, when, and how information should be acces-
sible, and ensuring efficient collaboration while reducing data
misuse risks.

Majeed et al. in [1] proposed the ST-BFL framework, uti-
lizing homomorphic encryption, FL-aggregators, FL-verifiers,
and a smart contract to satiate components of ST [14] for FL
process. Homomorphic encryption ensures input privacy, and
FL-verifiers validate the GM for OV. However, ST-BFL lacks
LM validation as it prioritizes input privacy over IV. Addition-
ally, detailed information on authentication and authorization
of FL-verifiers, vital for OV, is missing. In contrast, DAO-FL
focuses on DAO-based IV and OV of the FL process. Majeed
et al. proposed FL-Incentivizer in [17], incentivizing device
participation in FL with FL-Tokens and enabling ownership

1https://github.com/umermajeedkhu/DAOFLcode/tree/main/contracts

TABLE I
LIST OF ABBREVIATIONS, SYMBOLS AND DESCRIPTION

Abbreviation Symbol Description

CID - Content Identifier

DIV - Decentralized input verification

DOV - Decentralized output verification

DAO - Decentralized Autonomous Organization

DAOC - DAO contract

DAOFLC - DAO-FL contract

DAOMT - DAO Membership Token

FL - Federated Learning

FLNFTC - FL-NFT contract

FLT FLT FL Task

FLTP - FL-task publisher

FLTokenC - FL Token contract

GI t Global Iteration

GM GM Global Model

GMCID GMCID Global Model (IPFS) Content Identifier

IPFS - InterPlanetary File System

IV - Input verification

JP JP Join Proposal

KP KP Kick Proposal

LM - local model

LMUs - local model uploads

LMURI - local model Uniform Resource Identifier

LMCID - local model (IPFS) Content Identifier

MultiSigC - Multi-Signature contract

NFT - Non-fungible Token

NTT - Non-transferable Token

ODAO - Orchestrator-DAO

ODAOC - Orchestrator-DAO contract

ODAOM ODAOMi Orchestrator-DAO member

ODAOMT - Orchestrator-DAO Membership Token

ODAOMTC - Orchestrator-DAOMT contract

OV - Output verification

SBT - Soul-Bound Token

ST - Structured Transparency

URI - Uniform Resource Identifier

VDAO - Validation-DAO

VDAOC - VDAO contract

VDAOM V DAOMi VDAO member

VDAOMT - Validation-DAO Membership Token

VDAOMTC - Validation-DAOMT contract

rights to a GM via FL-NFT. FL-Incentivizer employs an
FLTPCO for LMs’ validation and GM updates, ensuring IV
and OV centrally. However, this work extends FL-Incentivizer
by decentralizing the IV and OV processes through DAOs
and a multi-signature contract. Table. II compares the ST

https://github.com/umermajeedkhu/DAOFLcode/tree/main/contracts

3

TABLE II
MAPPING OF STRUCTURED TRANSPARENCY TO ST-BFL, FL-INCENTIVIZER, AND DAO-FL

ST
Component

ST-BFL [15] FL-Incentivizer [17] DAO-FL (This Work)

Input Privacy • Input privacy is maintained by em-
ploying homomorphic encryption to
encrypt all the LMs.

• Input privacy is ensured by rely-
ing on the self-capabilities of FL,
where LMs are sent to the server
instead of raw data.

• DAO-FL achieves input privacy by
leveraging on self-capability of FL
where LMs, instead of raw data, are
transmitted to the server.

Output
Privacy

• Output privacy is maintained during
the aggregation process by produc-
ing a homomorphically encrypted
GM. The decryption of the GM is re-
stricted to the FLTP, ensuring GM’s
confidentiality.

• Output privacy in FL-Incentivizer
is guaranteed by the self-
capabilities of FL, where the
aggregated GM prevents the
leakage of LM privacy.

• Output privacy in DAO-FL is guar-
anteed through the inherent capa-
bilities of FL, as the aggregated
GM prevents any potential privacy
breaches associated with the LMs.

Input
Verification

• In ST-BFL, IV is a challenging as-
pect to achieve alongside input pri-
vacy. The current research indicates
that simultaneous attainment of IV
and input privacy is difficult.

• The IV process in FL-Incentivizer
is centralized, with FLTPCO be-
ing responsible for validating and
approving the LMs submitted by
participating devices.

• DIV is accomplished by the VDAO
utilizing DAO-based voting mecha-
nism to validate LMs.

Output
Verification

• ST-BFL framework employs an FL-
aggregator to generate the output,
which is the GM, by aggregating the
LMs.

• To ensure the accuracy and reliabil-
ity of the generated GM, FL-verifiers
participate by voting on whether
the FL-aggregator has aggregated the
LMs correctly.

• FLTPCO, as a central authority
in FL-Incentivizer, is responsible
for generating the updated GM as
output and maintaining a record
of it within the FLTPC contract,
making FLTPCO solely account-
able for OV.

• The potential updated GM is gener-
ated by the FLTP and put forward
in “GM Update” proposal within a
multi-signature contract for approval
by ODAOMs.

• The DOV is accomplished through
a voting mechanism within the mul-
tiSigC, which is facilitated by the
ODAO.

Flow
Governance

• ST-BFL framework incorporates
flow governance by utilizing a
smart contract and entities such as
ST-BFL market service manager,
FLTP, FL-aggregators, FL-verifiers,
and FL-trainers.

• Flow governance in FL-
Incentivizer is upheld by smart
contracts and FLTP.

• FL-Incentivizer enables partici-
pant incentivization through FLTo-
kens and the tokenization of the
GM as an NFT.

• The flow governance is maintained
by various smart contracts as well as
FLTP, ODAOMs, and VDAOMs.

• DAO-FL empowers ODAOMs, and
VDAOMs to perform member en-
rollment and member expulsion op-
erations enabling decentralized flow
governance.

components of ST-BFL, FL-Incentivizer, and the proposed
work “DAO-FL”.

Lunesu et al. in [19] presented a practical application of
SBTs for COVID-19 vaccine certification using the decen-
tralized Vaccine System DApp, powered by blockchain. The
research explains system components, smart contracts, user
interface, and database, while also addressing the roles and
actions of citizens and administrators within the system. It
emphasizes the potential of SBTs in establishing a reliable
decentralized society, and self-sovereign identity (SSI). They
also discuss associated challenges and privacy concerns. [20]
proposed an innovative approach that utilizes SBTs to en-
code individuals’ affiliations and academic credentials in a
decentralized network. The system employs off-chain storage,
smart contracts, and cryptographic technologies to enhance
privacy and security, and offers a trustworthy environment for
stakeholders, providing a robust and confidential alternative to
centralized academic credential verification.

Diallo et al. in [21] presented an eGov-DAO system to
enhance e-government transaction efficiency, transparency,
and security. Through the implementation of a DAO and
smart contracts, the system automates transactions, thereby
reducing errors and uncertainty while ensuring accountability

and mitigating corruption risks. Although the study offers
a comprehensive design and potential advantages, additional
research is essential to assess the practical applicability of the
system in real-world government operations.

Aitzhan et al. in [16] presented a decentralized energy
trading system utilizing multi-signature transactions on the
blockchain. Multi-signature ensures transaction security, re-
quiring 2 out of 3 signatures to spend a token and preventing
mediators from controlling transactions. It protects against
theft by requiring multiple signatures for validity. This ap-
proach fosters a secure and trustworthy energy trading system
without reliance on trusted third parties, promoting a more
decentralized and competitive environment for energy trade.

III. PRELIMINARIES

This section offers an overview of the technologies utilized
in the design and implementation of the DAO-FL framework.

A. Decentralized Autonomous Organization

A DAO [22] is an internet-native digital equivalent to
traditional companies in the physical world. DAOs, in essence,
allow members to create and vote on governance decisions that

4

are specifically made by the boards of directors or executives
in conventional companies. A DAO operates autonomously
following predefined business logic contained in its smart con-
tract to accomplish a collective mission of DAO’s community
with token economy-based incentives. “The DAO,” launched
in 2016, was the world’s first DAO and raised $150 million
in Ether (ETH), making it one of the largest digital crowd-
funding projects. Some other popular examples of DAOs are
DigixDAO, Aragon, Steemit, etc. DAO has an initial creation
phase in which typically EOAs send Ethers to the DOA smart
contract’s address and DOA tokens are created and assigned to
those EOAs as proof of DOA’s membership and voting rights.
DAOs make it possible to accomplish a broad spectrum of
objectives, encompassing activities such as delivering services,
generating targeted funds, owning and managing smart assets,
coordinating with other autonomous software, and facilitating
cooperation among various stakeholders.

B. Structured Transparency

Structured transparency [14] is a framework designed to
address the tradeoff between privacy and transparency for in-
formation flows. It consists of five components: input privacy,
output privacy, IV, OV, and flow governance. Input privacy
ensures that confidential information can be processed without
being disclosed to unauthorized parties. On the other hand,
output privacy enables individuals to participate in information
flows and contribute data without the risk of sensitive input
being exposed in the resulting output. IV involves ensuring the
integrity of the input, while OV ensures that the output has
not been tampered with. Flow governance refers to the overall
management and control of the information flow. To satisfy
each component, certain requirements must be met. Input
privacy requires mechanisms to process information without
revealing it, while output privacy necessitates preventing the
inference of sensitive input from the output. IV requires
methods to ensure the integrity and authenticity of the input,
and OV requires techniques to prove that the output has
not been tampered with. Flow governance requires effective
management and control mechanisms to govern the entire
information flow.

C. Multi-signature wallet

A multi-signature (also known as a “multisig”) wallet is
a type of digital wallet that enhances security by requiring
more than one person to sign off on a transaction before it
can be executed [23]. In multi-signature wallets, the execution
of transactions is governed by the quorum quotient, which
is represented by the m-of-n ratio. This ratio refers to the
minimum number of signatories required to sign a transaction,
expressed as a fraction of the total number of registered signa-
tories. For instance, a 3-of-5 wallet mandates that at least three
out of five designated signers must approve a transaction for
it to be processed. This can be useful in cases where multiple
parties need to agree on a transaction, or where added security
is desired to protect against unauthorized transactions. Multi-
signature wallets are commonly used in a variety of contexts,
including financial transactions, corporate governance, and

the management of cryptocurrency exchanges. Multi-signature
wallets are commonly implemented using smart contracts to
enforce the requirement of multiple signatures for transaction
authorization.

IV. PROPOSED FRAMEWORK

This section offers a comprehensive explanation of the
proposed system architecture and execution workflow within
the DAO-FL framework. The system architecture, depicted in
Fig. 1, comprises three blocks: the administrative block, the
decentralized block, and the FL-trainer block.

The administrative block consists of pivotal stakeholders
in the DAO-FL framework including a regulator, FL-task-
publisher (FLTP), Orchestrator-DAO (ODAO), and Validation-
DAO (VDAO). These entities govern and orchestrate various
aspects of the DAO-FL ecosystem. The regulator governs the
FL ecosystem, deploys the FLNFTC, and standardizes FLN-
FTs metadata. We denote the regulatory entity as Regulator.
When an entity referred to as the FLTP adopts the DAO-FL
framework to train an FL model, it must deploy specific smart
contracts, namely ODAOC, VDAOC, DAOFLC, and Multi-
SigC, customized exclusively for the specific FL task. The
ODAO, a DAO overseeing the FL process, comprises multi-
ple members (ODAOMi). These Orchestrator-DAO members
(ODAOMs) are responsible for approving proposals from the
FLTP and possess the ability to aggregate LMs. Similarly, the
VDAO verifies the LMs submitted by FL-Trainers by utilizing
its VDAO members (VDAOMs), where each V DAOMi can
validate LMs relevant to the given FL task.

The decentralized block consists of essential components:
FL-NFT contract (FLNFTC), ODAO contract (ODAOC),
Orchestrator-DAOMT contract (ODAOMTC), VDAO con-
tract (VDAOC), Validation-DAOMT contract (VDAOMTC),
DAO-FL contract (DAOFLC), Multi-Signature contract (Mul-
tiSigC), FL Token contract (FLTokenC), and InterPlane-
tary File System (IPFS). The FLNFTC, derived from the
ERC-721 standard and deployed by the regulator, enables
the tokenization of FLT’s GM. ODAOC manages member-
ship operations within the ODAO, while ODAOMTC mints
Orchestrator-DAOMTs (ODAOMTs) for ODAOMs. Similarly,
VDAOC handles member-related operations in the VDAO, and
VDAOMTC generates Validation-DAOMTs (VDAOMTs) for
VDAO members. A comprehensive explanation of DAOMTs is
provided in Section IV-A. Both ODAOMTC and VDAOMTC
are customizations of ERC-721 standard. It is worth noting
that the ODAOMTC and VDAOMTC are deployed upon
the deployment of the ODAOC and VDAOC respectively.
The DAOFLC orchestrates the FL process for a given FL
task, supported by MultiSigC for decentralized execution. The
MultiSigC, in turn, facilitates the decentralized execution of
FL operations within the DAOFLC by collecting multiple sig-
natures from ODAOMi. FLTokenC, deployed by DAOFLC,
manages FL-Tokens specific to each FL task. IPFS serves as a
decentralized file storage system for metadata, LMs, and GM.

The FL-Trainers block consists of multiple FL learners,
with each FL-Trainer representing a participating device or
client in the FL process. We denote the FL-Trainer for the

5

ODAOC
FL-NFT

Contract

FL-Token

Contract

FL Task PublisherFLTP’s crypto

Wallet

Regulator

FL-Trainer

block

Decentralized

block

Administrative

block

FL-Traineri,t

ODAO VDAOGM

ODAOMTC VDAOMTC VDAOCDAOFLC

ODAOMi VDAOMi

MultiSigC

Fig. 1. DAO-FL: System Architecture.

ith client in the t+ 1th generation interval of FL task as
FLTraineri,t+1. The FL-Trainer retrieves and downloads
the GM t+1 and generates its local model upload LMUi,t+1

utilizing its respective local dataset Di,t+1.

Besides the previously mentioned entities, the system ar-
chitecture also includes two crucial components: FL-NFTs
and FL-Tokens. Each FL-NFT, denoted as FLNFT , is an
ERC-721 compliant dynamic NFT associated with an FL
task. It possesses a distinct numeric identity, referred to
as FLNFTID. The FL-NFT is equipped with a Uniform
Resource Identifier (URI) called tokenURI that links to the
metadata of the current GM for the FL task [17]. Additionally,
the FLNFT includes the GMCID property, which represents
the IPFS Content Identifier (CID) of the most recent GM. Cru-
cially, the FL-NFT contains the address of the corresponding
DAOFLC, known as OrchestratorAddress. The tokenURI ,
GMCID, and OrchestratorAddress for each FL-NFT are
distinctive. The FLTP, as the owner of the FLNFT, facilitates
the benefits of GM commercialization and tokenization [17].
Furthermore, FL-Tokens, symbolized as FLToken, conform
to the ERC-20 standard and are awarded to FL-Trainers within
the FL process [17].

An overview of subsequent subsections is presented as
follows: In Section IV-A, we introduce the novel concept
of DAOMTs. Section IV-B proposes a member enrollment
scheme for adding new members to a DAO, while Sec-
tion IV-C presents a member expulsion scheme to address
inactive or malicious members. Furthermore, Section IV-D
outlines a mechanism for transferring ODAOC or VDAOC
to a new proprietor. In Section IV-E, a scheme is proposed
for partially decentralized orchestration of FL process in the
DAOFLC using the MultiSigC. Additionally, Section IV-F

details a comprehensive execution workflow for the DAO-FL
framework, orchestrating the FL process from initial setup
to completing a full GI. Lastly, Section IV-G delves into
GM commercialization, involving the transfer of FL-NFT and
contracts ownership to the new proprietor.

A. DAO Membership Tokens (DAOMTs)

DAOs are decentralized organizations that operate au-
tonomously on a blockchain, governed by their members
through a voting-based decision-making process. DAOMTs are
a specific type of token designed to represent the membership
of entities within a DAO. They are classified as NTTs and
SBTs [6], meaning they cannot be traded or transferred on
a marketplace. Additionally, DAOMTs are categorized as
NFTs, with each token being unique. These tokens can be
minted or burnt, denoting controlled creation and destruction,
respectively. Typically, members are limited to holding one
token per address, thereby restricting the maximum balance
to one token per address. DAOMTs can be grouped together
with other tokens to represent various levels or types of
membership, forming a collection. They can be utilized for
the governance of DAO-based systems, granting members the
right to vote on proposals and participate in decision-making
processes regarding the organization’s direction and operation.
Ultimately, DAOMTs contribute to a more democratic and
decentralized approach to decision-making within a DAO.

B. Membership Enrollment in ODAO and VDAO

The process of becoming a member of ODAO or VDAO
follows a similar procedure. Hence, in this section, we will
describe the steps for joining a DAO through a DAO contract

6

Algorithm 1 : Membership Enrollment via DAOC
Caller: DAOMp

1: procedure proposeJoin(address candidate)
2: Ensure DAOMp holds a DAOMT
3: if candidate /∈ DAO and

JoinProposals[candidate].open == false then
4: Create new JP
5: Set JP.proposer = DAOMp

6: Set JP.candidate = candidate
7: Set JP.open = true
8: Set JP.approvalvotes = JP.denialvotes = 0
9: Set JP.voters = empty AddressSet

10: Add JP to JoinProposals
11: end if
12: end procedure

Caller: DAOMv

1: procedure voteJoin(address candidate, bool Vv)
2: Ensure DAOMv holds a DAOMT
3: Set JP = JoinProposals[candidate]
4: if JP.open == true and DAOMv /∈ JP.voters then
5: if Vv==true then
6: Add Approval vote for DAOMv

7: else
8: Add Deny vote for DAOMv

9: end if
10: Count JP.approvalvotes and JP.denialvotes
11: Q = 60% ∗ n(DAOMT)
12: if JP.denialvotes > Q then
13: Mint DOAMT for candidate
14: Set JP.open = false
15: else if JP.denialvotes > Q then
16: Set JP.open = false
17: end if
18: end if
19: end procedure

(DAOC), which is inherited by both ODAOC and VDAOC.
After the creation of the DAO, it is essential to have pre-
existing members. Let us denote the existing member within
the DAO as DAOMi ∈ DAO. The simplified sequential
outline for joining a DAO is as below:

• Step 1: When a new candidate seeks to join the DAO,
a current member of the DAO, denoted as DAOMp,
will initiate a “proposeJoin” transaction to the DAOC.
This transaction includes the candidate’s address as an
argument, effectively proposing its inclusion into the
DAO.

• Step 2: To process the “proposeJoin” transaction, the
DAOC first validates that the submitter (DAOMp) pos-
sesses a DAOMT.

• Step 3: If the candidate is not a current member of DAO
and no existing “Join Proposal” exists for it, a new “Join
Proposal” (JP) is initiated. The JP includes the candi-
date’s address and is proposed by DAOMp. A boolean
flag called “open” is set to true to indicate that JP is
currently being processed and has not been accepted or
rejected. The approvalvotes and denialvotes fields of
the JP are initialized to 0, indicating no approval or
denial votes have been cast yet. The set of voters for the
JP is initially empty, indicating no DAOMi ∈ DAO
have voted for the JP yet.

External calls Internal calls and Algorithm

DAOMp DAOC DAOMTCcandidate

1 DAOC.proposeJoin

2 Ensure DAOMp ∈ DAO

If (candidate ∉ DAO and

JoinProposals[candidate].open ==

false)

3

Create new JP

Add JP to JoinProposals4

DAOMv

5 DAOC.voteJoin

6 Ensure DAOMv ∈ DAO

If(JP.open == true && DAOMv ∉ JP.voters)
7

If(Vv==true)

7a

Add Deny vote for DAOMv

Add Approval vote for DAOMv

7b

Count JP.approvalvotes7c

Q = 60% ∗ n(DAOMT) 7d

If(approvalvotes>Q)

DAOMTC.mint(candidate)7e

Mint DAOMT for candidate7f

If(JP.approvalvotes>Q || JP.denialvotes>Q)

JP.open = false7g

Count JP.denialvotes

true

true

true

false

true

true

Fig. 2. Membership Enrollment in DAO - Sequence diagram.

• Step 4: Subsequently, the JP is then stored in a mapping
data structure called the JoinProposals with candidate as
the index.

Steps 1-4 are combined in the procedure proposeJoin
(Algo. 1). The existing DAO members vote to accept or reject
the JP . The voting procedure consists of the following steps:

• Step 5: When a DAOMv intends to vote on a JP ,
it will initiate a “voteJoin” transaction within DAOC,
providing the candidate’s address and a boolean variable
(Vv) representing their voting decision. The value “true”
of Vv signifies the approval of DAOMv for the JP , while
“false” indicates disapproval.

• Step 6: To prevent spam transactions, the DAOC will
first verify that the DAOMv possesses a valid DAOMT .

• Step 7: If an open JP exists for candidate and DAOMi

has not yet voted on it, their vote is added to the list
JP.voters. The total number of approval and denial votes

7

are tallied as:
JPapprovalvotes =

∑
Vv∈JP.voters

1Vv==true, (1)

and
JPdenialvotes =

∑
Vv∈JP.voters

1Vv==false (2)

respectively. The quorum, defined as Q = 60% ∗
n(DAOMT), is 60% of the total supply of DAOMTC. If
the JPapprovalvotes surpasses Q, DAOC mints DAOMT
for the candidate through DAOMTC, closing JP by set-
ting the “open” flag to false. Conversely, if JPdenialvotes

surpasses Q, the JP is rejected by setting the “open” flag
to false.

Steps 5-7 are consolidated in the procedure voteJoin
(Algo. 1). Fig. 2 visually illustrates the process of joining a
DAO.

C. Member Expulsion in ODAO and VDAO

The presence of non-active or malicious members in a
DAO raises concerns and calls for their expulsion. Non-active
members fail to actively participate in the orchestration of the
FL process, while malicious members engage in endorsing
inaccurate updates. The procedure for removing members from
both ODAO and VDAO is consistent, and a kick-out mech-
anism is introduced to address these non-active or malicious
individuals. The simplified kick-out mechanism encompasses
the following sequential steps:
• Step 1: When a DAO member, identified as DAOMp, de-

termines that another member (referred to as candidate)
should be expelled, DAOMp initiates the kick-out pro-
cess by submitting a “proposeKick” transaction to the
DAOC. This transaction includes the address of the
targeted candidate as an argument.

• Step 2: DAOC verifies if DAOMp holds a DAOMT
to prevent spam transactions.

• Step 3: If the candidate is a member of the DAO and
there is no existing “Kick Proposal” in progress for the
candidate, a new “Kick Proposal” (KP) is initiated.
The candidate is specified as the target of the KP , and
DAOMp assumes the role of the proposer. The KP is
marked as “open” to indicate its ongoing status, awaiting
acceptance or rejection. Initially, the KP has no approval
or denial votes, so both approvalvotes and denialvotes
fields of KP are set to zero. The set of voters for the
KP.voters is empty.

• Step 4: The KP is added to a mapping structure called
KickProposals, with the candidate serving as the index.

Steps 1-4 are consolidated into the procedure proposeKick
(Algo. 2). The voting process, executed by existing DAO
members for KP , involves the following steps:
• Step 5: In the DAO’s kick proposal voting process, a
DAOMv can cast their votes through a transaction called
“voteKick” to DAOC. It includes the candidate’s address
and a boolean variable (Vv) indicating approval (true) or
disapproval (false), as arguments.

• Step 6: The DAOC verifies that both DAOMv and
candidate hold a DAOMT.

Algorithm 2 : Member Expulsion via DAOC
Caller: DAOMp

1: procedure proposeKick(address candidate)
2: Ensure DAOMp holds a DAOMT
3: if candidate ∈ DAO and

KickProposals[candidate].open == false then
4: Create new KP
5: Set KP.proposer = DAOMp

6: Set KP.candidate = candidate
7: Set KP.open = true
8: Set KP.approvalvotes = KP.denialvotes = 0
9: Set KP.voters = empty AddressSet

10: Add KP to KickProposals
11: end if
12: end procedure

Caller: DAOMv

1: procedure voteKick(address candidate, bool Vv)
2: Ensure DAOMv holds a DAOMT
3: Ensure candidate holds a DAOMT
4: Set KP = KickProposals[candidate]
5: if KP.open == true and DAOMv /∈ KP.voters then
6: if Vv==true then
7: Add Approval vote for DAOMv

8: else
9: Add Deny vote for DAOMv

10: end if
11: Count KP.approvalvotes and KP.denialvotes
12: Q = 60% ∗ n(DAOMT)
13: if KP.approvalvotes > Q then
14: Burn DOAMT owned by candidate
15: Set KP.open = false
16: else if KP.denialvotes > Q then
17: Set KP.open = false
18: end if
19: end if
20: end procedure

• Step 7: If the KP is open for a specific candidate and
DAOMv has not yet voted, their vote is added to the
list KP.voters. The total approval and denial votes are
counted as:

KPapprovalvotes =
∑

Vv∈KP.voters

1Vv==true, (3)

and
KPdenialvotes =

∑
Vv∈KP.voters

1Vv==false (4)

respectively. The quorum, defined as Q = 60% ∗
n(DAOMT), is 60% of the total supply of DAOMTC.
If the KPapprovalvotes surpasses Q, DAOC burns the
DAOMT owned by the candidate, closing KP by setting
the “open” flag to false. Conversely, if KPdenialvotes

surpasses Q, the KP is rejected by setting the “open”
flag to false.

Steps 5-7, for a KP , are summarized in procedure voteKick
(Algo. 2). The sequential flow for kicking out a DAO’s
member is depicted in Fig. 3.

D. Transferring ODAOC and VDAOC

The FLTP owns the GM, which is authenticated through
the corresponding FL-NFT in FLNFTC. Additionally, the
FLTP also holds ownership of ODAOC and VDOAC. When

8

External calls Internal calls and Algorithm

DAOMp DAOC DAOMTCcandidate

1 DAOC.proposeKick

2 Ensure DAOMp ∈ DAO

If (candidate ∈ DAO and

KickProposals[candidate].open == false)

3

Create new KP

Add KP to KickProposals4

DAOMv

5 DAOC.voteKick

6 Ensure DAOMi ∈ DAO

If(KP.open == true && DAOMv ∉ KP.voters)
7

If(Vv==true)

7a

Add Deny vote for DAOMv

Add Approval vote for DAOMv

7b

Count KP.approvalvotes7c

Q = 60% ∗ n(DAOMT) 7d

If(KP.approvalvotes>Q)

DAOMTC.burn(candidate)7e

Burn DAOMT of candidate7f

6a Ensure candidate ∈ DAO

If(KP.approvalvotes>Q || KP.denialvotes>Q)

7g

Count KP.denialvotes

KP.open = false

true

true

true

true

true

Fig. 3. Member Expulsion from DAO -Sequence diagram.

transferring ownership of the FLNFT, ownership of ODAOC
and VDOAC must be transferred to the successor proprietor.
The steps for transferring ownership of the DAOC, the parent
contract of ODAOC and VDAOC, as outlined in the procedure
transferOwnership (Algo. 3), are as follows:

• Step 1: The current owner (FLTP) initiates a “transfer
ownership” transaction to DAOC with the address of the
new owner (newOwner) as an argument.

• Step 2: The DAOC verifies that the new owner
newOwner is different from the previous owner, and
proceeds to transfer ownership of DAOC to newOwner.
If newOwner is not already a member of the DAO, a
DAOMT is minted for newOwner, while the DAOMT
owned by oldOwner is burned to maintain scarcity.

Algorithm 3 : Transferring DAOC

Caller: FLTP Modifier: onlyOwner()
2: procedure transferOwnership(address newOwner)
3: oldOwner = owner()
4: if oldOwner! = newOwner then
5: Transfer ownership of DOAC to newOwner
6: if newOwner /∈ DAO then
7: Mint DAOMT for newOwner
8: Burn DAOMT of oldOwner
9: end if

10: end if
11: end procedure

E. Partially Decentralized Orchestration of FL process in
DAOFLC through Multi-Signature Contract

In a multi-signature wallet setup, a Multi-Signature Contract
(MultiSigC) is utilized to gather necessary signatures or votes
from specified individuals for a transaction. Upon reaching
the required quorum, the MultiSigC executes the transaction
within the designated contract. In DAO-FL, the MultiSigC
consolidates votes from ODAOMs to facilitate decentralized
approval on different proposals to execute corresponding trans-
actions in the DAOFLC, aiding in the orchestration of the FL
process. It is important to highlight that while the MultiSigC
handles this decentralized approval, the FLTP retains sole
responsibility for executing approved proposals, resulting in
a partially decentralized orchestration process. This sequential
process, illustrated in Fig. 4 is as follows:
• Step 1: The FLTP initiates a transaction “propose”

(or “proposecreateFLNFT” or “proposeUpdateGM”) with
specific arguments submitted to MultiSigC. This transac-
tion covers various proposals like “createFLNFT”, “Initi-
ate LMUs”, “Cease LMUs”, “setLMUVDRF”, or “Up-
dateGM”. After verifying the submitter’s identity, Multi-
SigC rigorously validates the transaction based on argu-
ments, proposal type, and current state. Upon successful
validation, a new “Proposal” is created with a unique
identifier (proposalID) and set to “Open” state. The
proposal’s selector is configured using the corresponding
function signature within the DAOFLC. Subsequently, the
FLTP engages off-chain to secure ODAOMs’ approval.
This step is encapsulated in the procedure propose
(Algo. 4).

• Step 2: ODAOMs validate the proposal off-chain, con-
sidering its properties, nature, and the states of Mul-
tiSigC and DAOFLC. If valid, an ODAOMv initiates
an “approve” transaction towards MultiSigC, including
the proposalID as an argument. MultiSigC verifies the
transaction’s legitimacy, checks if the proposal is open,
and confirms that the ODAOMv has not voted previ-
ously. MultiSigC rigorously validates proposals based on
relevant arguments, proposal’s nature, and the current
state. Upon successful validation, an approval vote is
recorded. The cumulative approvals are defined as:

numApprovals =
∑

ODAOMv∈proposal.approvals

1. (5)

If the cumulative approvals exceed the quorum Q (60%
of ODAMTC supply), the proposal state is updated to the

9

Algorithm 4 : MultiSigC
Caller: FLTP Modifier: onlyOwner()

1: procedure propose([selector], [tokenURI], [GMCID], [t+ 1])
2: Require:Caller==MultiSigC.owner()
3: Validate propose
4: if propose is valid then
5: proposal = Create new Proposal with proposalID

6: Set proposal.state = Open, Set proposal.selector
7: end if
8: end procedure
1: procedure execute(uint proposalID)
2: Require:Caller==MultiSigC.owner()
3: state = Proposal[proposalID].state
4: if state == Executable then
5: selector = Proposal[proposalID].selector
6: argumentData = Proposal[proposalID].argumentData
7: if Call DAOFLC.selector with argumentData then
8: Set proposal.state = Executed
9: Update state of MultiSigC

10: end if
11: end if
12: end procedure

1: procedure closeProposal(uint proposalID)
2: Require:Caller==MultiSigC.owner()
3: state = Proposal[proposalID].state
4: if state == Open or state == Executable then
5: Set Proposal[proposalID].state = Closed
6: end if
7: end procedure

Caller: ODAOMv

1: procedure approve(uint proposalID)
2: Ensure ODAOMv holds a ODAOMT
3: proposal = Proposal[proposalID]
4: if proposal.state == Open and ODAOMv /∈ proposal.approvals then
5: Add ODAOMv to proposal.approvals
6: numApprovals = proposal.approvals.length()
7: Q = 60% ∗ n(ODAOMT)
8: if numApprovals > Q then
9: Set proposal.state = Executable

10: end if
11: end if
12: end procedure

“Executable”. This step is outlined in procedure approve
(Algo. 4).

• Step 3: After obtaining necessary approvals on a proposal,
FLTP triggers its execution by sending an “execute” trans-
action to the MultiSigC with the unique proposalID. The
MultiSigC validates the proposal’s executability based
on the proposal state (proposal.state) and MultiSigC
state. If conditions are met, the MultiSigC executes the
proposal within DAOFLC, updating its state. This process
is outlined in procedure execute (Algo. 4). Following ex-
ecution, the FLTP proposes the next “propose” transaction
to continue DAO-FL operations in alignment with the FL
process.

If a proposal lacks sufficient approvals due to inaccuracies in
tokenURI and GMCID, FLTP can create precise alternative
proposals. To close inaccurate proposals, FLTP submits a
“closeProposal” transaction with the relevant proposalID as
an argument, discarding the inaccurate proposal for future
accurate ones. This process is outlined in the procedure

External calls Internal calls and Algorithm

DAOFLCODAOMTCFLTP

1 MultiSigC.propose

1a

If (propose is valid)1b

Create proposal = new Proposal with proposalID

Set proposal.state = Open , Set proposal.selector 1c

ODAOMv

2a Ensure ODAOMv ∈ ODAO

If(proposal.state == Open and ODAOMv ∉

proposal.approvals)
2b

If(numApprovals > Q)

2dSet proposal.state = Executable

Q = 60%∗n(ODAOMT)

If(state ==

Executable)

MultiSigC

Validate propose

2 MultiSigC.approve

proposal = Proposal[proposalID]

 Add ODAOMv to proposal.approvals2c numApprovals =

proposal.approvals.length()

true

true

true

3 MultiSigC.execute Require

Caller==MultiSigC.owner();
state = Proposal[proposalID].state;

3a

true
3b

 selector = Proposal[proposalID].selector;

argumentData =

Proposal[proposalID].argumentData;

Call DAOFLC.selector with argumentData3c

3d

 Set proposal.state = Executed;

Update state of MultiSigC;

3f

3e

If(state == Open or

state == Executable)

4 MultiSigC.closeProposal Require

Caller==MultiSigC.owner();
state = Proposal[proposalID].state;

4a

true

4b
Set

Proposal[proposalID].state

= Closed

Require

Caller==MultiSigC.owner()

Fig. 4. Partially Decentralized Orchestration of FL process in DAOFLC
through MultiSigC - Sequence diagram.

closeProposal (Algo. 4).

F. Execution Workflow of DAO-FL framework

In this subsection, we explore the execution workflow of
the DAO-FL framework for a complete GI t, as depicted in
Fig. 5. The following is a concise outline of the sequential
flow:

10

FLTP Regulator

ODAOC FLNFTC FLTokenC

Deploy FLNFTC

Deployment of smart contracts External requests Internal algorithmic processes and subroutine calls

MultiSigC

 FLNFTC.FLNFTC_Constructor

Deploy ODAOC

 ODAOC.ODAOC_Constructor

ODAOMTC

Deploy ODAOMTC2b

ODAOMTC.

ODAOMTC_Constructor

 Deploy

VDAOC
 VDAOC.

 VDAOC_Constructor
3a

Deploy

VDAOMTC
3b

VDAOMTC.

VDAOMTC_

Constructor

3c

VDAOC VDAOMTCDAOFLC

Deploy

DAOFLC
4

DAOFLC.

DAOFLC_Constructor
4a Deploy

FLTokenC

FLTokenC.

FLTokenC_Constructor

Deploy MultiSigC5 MultiSigC.MultiSigC_Constructor5a

DAOFLC.setMultiSigCAddr6

FLTP.

Generate_FLNFT

7 proposalID = MultiSigC.

proposecreateFLNFT
7a MultiSigC.

approve(proposalID)
7b

 MultiSigC.

execute(proposalID)
DAOFLC.

createFLNFT
7d FLNFT.craftFLNFT7e

FLTP.

Initiate_LMuploads
8 proposalID = MultiSigC.

propose(“Initiate_LMUs”)
8a

 MultiSigC.

approve(proposalID)
8b

 MultiSigC.

execute(proposalID)
DAOFLC.

Initiate_LMUs
8d

FLTP.

Halt_LMuploads

11 proposalID = MultiSigC.

propose(“Cease_LMUs”)
11a MultiSigC.

approve(proposalID)

11b

 MultiSigC.

execute(proposalID) DAOFLC.Cease_LMUs11d

FL-Traineri,t

FL-Traineri,t.
SEND_LMU

DAOFLC.uploadLM10

VDAOMi

VDAOMi.

Review_LMuploads
12DAOFLC.voteLMU12a

FLTokenC.issueFLToken12b

FLTP.

Configure_LMUVDRC

13 proposalID = MultiSigC.

propose(“setLMUVDRF”)
13a MultiSigC.

approve(proposalID)
13b

 MultiSigC.

execute(proposalID)
DAOFLC.setLMUVDRF13d

FLTP.

Aggregate_LMUs
proposalID = MultiSigC.

proposeUpdateGM
 MultiSigC.

approve(proposalID)

 MultiSigC.

execute(proposalID)
DAOFLC.

UpdateGM

FLNFT.assignGMCID

14

14a 14b

14c 14d

14e

FLNFT.assignTokenURI14f

1a
1

2

2a 2c

3

4b 4c

7c

8c

9

DAOFLC.Record_LMU10a

11c

13c

ODAOMi

ODAOMi

ODAOMi

Fig. 5. DAO-FL: Simplified execution workflow.

• Step 1: The Regulator deploys the FLNFTC for the FL
ecosystem. The deployment transaction includes three
arguments: “Federated Learning NFT” as the name,
“FLNFT” as the symbol, and a base URI used in
the TokenURI of FLNFTs. The ownership of FLN-
FTC is then transferred to the Regulator. The pro-

cedure FLNFTC Constructor (Algo. 5) summarizes
this step.

• Step 2: For the FL task, FLTP deploys the ODAOC,
specifying two candidate ODAOMs (ODAOMi)
as arguments, along with a base URI parameter
for the TokenURI of ODAOMTs. The procedure

11

Algorithm 5 : FLNFTC
Owner: Regulator Deployer: Regulator
Input: “Federated Learning NFT”, “FLNFT”, base URI

3: procedure FLNFTC Constructor(name, symbol, base URI)
4: Assign FLNFTC.owner ← Regulator.address
5: Assign FLNFTC.name← name
6: Assign FLNFTC.symbol← symbol
7: Assign FLNFTC.base URI ← base URI
8: end procedure

Executor: DAOFLC
1: procedure craftFLNFT(GMCID, tokenURI)
2: FLNFTID = Mint FLNFT transferred to FLTP
3: Assign FLNFT .tokenURI ← tokenURI
4: Assign FLNFT .GMCID ← GMCID
5: Assign FLNFT .OrchestratorAddress← DAOFLC.address

6: end procedure
1: procedure assignGMCID(GMCID, FLNFTID)
2: if FLNFTC.Verify GMCID(FLNFTID, GMCID) then
3: Assign GMCIDs[FLNFTID]← GMCID
4: Ensure Distinct GMCIDs
5: Emit GMCIDset(FLNFTID,GMCID)
6: Return true
7: end if
8: end procedure
1: procedure assignTokenURI(tokenURI , FLNFTID)
2: if FLNFTC.Verify TokenURI(tokenURI , FLNFTID) then
3: Assign tokenURIs[FLNFTID]← tokenURI
4: Ensure Distinct tokenURIs
5: Emit TokenURIset(FLNFTID, tokenURI)
6: Return true
7: end if
8: end procedure

Algorithm 6 : FLTP
1: procedure Generate FLNFT
2: Create GMt ▷ t = 0
3: GMCID ← Store GMt on IPFS
4: Create FLNFT Metadatat for GMt

5: tokenURI ← Store FLNFT Metadatat on IPFS
6: Call MultiSigC.proposecreateFLNFT (GMCID, tokenURI)

7: end procedure

1: procedure Initiate LMuploads
2: Call MultiSigC.propose (selector, t+ 1) ▷ selector for

proposal “Initiate LMUs”
3: end procedure

1: procedure Halt LMuploads
2: Call MultiSigC.propose (selector, t+ 1) ▷ selector for

proposal “Cease LMUs”
3: end procedure

1: procedure Configure LMUVDRF
2: Call MultiSigC.propose (selector, t+ 1) ▷ selector for

proposal “setLMUVDRF”
3: end procedure

1: procedure Aggregate LMUs
2: Create GMt+1 using [9]
3: GMCID ← Store GMt+1 on IPFS
4: Create FLNFT Metadatat+1 for GMt+1
5: tokenURI ← Store FLNFT Metadatat+1 on IPFS

6: Call MultiSigC.proposeUpdateGM(t+1, GMCID, tokenURI)

7: end procedure

Algorithm 7 : ODAOC
Owner: FLTP Deployer: FLTP

1: procedure ODAOC Constructor(address member1,
address member2, base URI)

2: Set ODAOC.owner = FLTP.address
3: Deploy ODAOMTC (“Orchestrator-DAOMT”,“ODAOMT”, base URI)
4: Call ODAOMTC.mint(FLTP)
5: Call ODAOMTC.mint(member1)
6: Call ODAOMTC.mint(member2)
7: end procedure

Algorithm 8 : ODAOMTC
Owner: ODAOC Deployer: ODAOC
Input: name, symbol, base URI

1: procedure ODAOMTC Constructor
2: Set ODAOMTC.owner = ODAOC.address
3: Set ODAOMTC.name = name
4: Set ODAOMTC.symbol = symbol
5: Set ODAOMTC.base URI = base URI
6: end procedure

Caller: ODAOC Modifier: onlyOwner()
1: procedure mint(address recipent)
2: if candidate /∈ ODAO then
3: Mint ODAOMT for recipent
4: end if
5: end procedure

ODAOC Constructor (Algo. 7), is initiated for
ODAOC deployment, transferring ODAOC’s ownership
to FLTP. ODAOC then deploys ODAOMTC with
specified parameters (name, symbol, and base URI of
ODAOMTs), transferring its ownership to ODAOC.
Subsequently, ODAOC mints ODAOMTs for FLTP
and two specified members following the procedures
ODAOMTC Constructor and mint (Algo. 8).
Once ODAOC is deployed, the ODAOMs can perform
membership enrollment and expulsion operations within
ODAOC, as defined in Section IV-B and Section IV-C,
respectively.

• Step 3: FLTP deploys the VDAOC using the procedure
V DAOC Constructor (Algo. 9), adding two entities
as VDAO members (V DAOMi), and taking ownership
of VDAOC. A base URI is specified for the TokenURI
of VDAOMTs during deployment. Following the proce-
dures V DAOMTC Constructor and mint (Algo. 10),
VDAOC deploys VDAOMTC with the provided argu-
ments (name, symbol, and base URI of VDAOMTs),
transferring VDAOMTC’s ownership to VDAOC, and
minting VDAOMTs for FLTP and the two specified mem-
bers. Once VDAOC is deployed, VDAOMs can perform
the membership enrollment and membership expulsion
operations within VDAOC.

• Step 4: FLTP deploys DAOFLC with addresses of FLN-
FTC, ODAOC, and VDAOC as arguments, transferring
DAOFLC’s ownership. DAOFLC then deploys FLTokenC
with a specific name and symbol for FLTokens, trans-
ferring FLTokenC’s ownership to DAOFLC. This pro-
cess is outlined in procedures DAOFLC Constructor
(Algo. 11) and FLTokenC Constructor (Algo. 16).

• Step 5: The FLTP deploys the MultiSigC,

12

Algorithm 9 : VDAOC
Owner: FLTP Deployer: FLTP

1: procedure VDAOC Constructor(address member1,
address member2, base URI)

2: Set V DAOC.owner = FLTP.address
3: Deploy V DAOMTC (“Validation-DAOMT”,“VDAOMT”, base URI)
4: Call V DAOMTC.mint(FLTP)
5: Call V DAOMTC.mint(member1)
6: Call V DAOMTC.mint(member2)
7: end procedure

Algorithm 10 : VDAOMTC
Owner: V DAOC Deployer: V DAOC
Input: name, symbol, base URI

1: procedure VDAOMTC Constructor
2: Set V DAOMTC.owner = ODAOC.address
3: Set V DAOMTC.name = name
4: Set V DAOMTC.symbol = symbol
5: Set V DAOMTC.base URI = base URI
6: end procedure

Caller: VDAOC Modifier: onlyOwner()
1: procedure mint(address recipent)
2: if candidate /∈ V DAO then
3: Mint V DAOMT for recipent
4: end if
5: end procedure

transferring its ownership, as shown in procedure
MultiSigC Constructor (Algo. 13).

• Step 6: The FLTP submits the transaction “setMultiSig-
CAddr“ to DAOFLC with the address of MultiSigC as an
argument. The procedure setMultiSigCAddr (Algo. 11)
summarizes this step. After this transaction, MultiSigC
will be able to execute transactions in DAOFLC.

• Step 7: Following procedure Generate FLNFT in
(Algo. 6), the FLTP constructs the “preliminary GM
parameters“ for the FL task and stores it on IPFS,
which yields a CID referred to as GMCID. These
parameters serve as GMt for t = 0. Additionally, FLTP
uploads relevant files, including instructions for FL tasks,
LMUs, reward criteria, and any tailored information, to
IPFS. All of these details, including the addresses of
associated contracts, are encompassed within a JSON-
encoded meta-data identified as FLNFT Metadatat.
The FLNFT Metadatat is uploaded to IPFS, result-
ing in a CID called tokenURI . Afterward, the FLTP
initiates procedure proposecreateFLNFT (propse) in
Algo. 4 with arguments e.g. tokenURI and GMCID.
This initiates the multi-signature process as detailed
in Section IV-E for proposal “createFLNFT”. During
the execution of proposal “createFLNFT”, the DAOFLC
mints the FLNFT on FLNFTC for FLTP, as illustrated
in procedure createFLNFT (Algo. 11) and procedure
craftFLNFT (Algo. 5). The corresponding properties
including the OrchestratorAddress of FLNFT are also
set.

• Step 8: The FLTP triggers the procedure
Initiate LMuploads (Algo. 6) to commence the
LMUs on the DAOFLC. FLTP initiates the procedure
propose (Algo. 4) with parameters like selector and

Algorithm 11 : DAOFLC
Owner: FLTP Deployer: FLTP

1: procedure DAOFLC Constructor(FLNFTC.address,
ODAOC.address, V DAOC.address)

2: Set DAOFLC.owner = FLTP.address
3: Deploy FLTokenC (“Federated Learning Token”, “FLToken”)
4: end procedure

Caller: FLTP Modifier: onlyOwner()
1: procedure setMultiSigCAddr(MultiSigC.address)
2: Set DAOFLC.MultiSigCAddr = MultiSigC.address
3: end procedure

Caller: MultiSigC Modifier: onlyMultiSigC()
1: procedure createFLNFT(tokenURI , GMCID)
2: FLNFTID = call FLNFTC.craftFLNFT

(tokenURI , GMCID)
3: Set DAOFLC.FLNFTID = FLNFTID
4: Set DAOFLC.GMCID = GMCID
5: end procedure
1: procedure Initiate LMUs(t+ 1)
2: if DAOFLC.LMUactiveF == false then
3: Set DAOFLC.LMUactiveF = true
4: Emit DAOFLC.LMUsInitiated(t+ 1)
5: end if
6: end procedure
1: procedure Cease LMUs(t+1)
2: if LMUactiveF == true then
3: Set LMUactiveF = false and LMUC[t+ 1] = true
4: Emit LMUsCeased(t+ 1)
5: end if
6: end procedure

Caller: FLTraineri,t+1

1: procedure uploadLM(LMCID, LMURI , t+ 1)
2: if DAOFLC.Authenticate LMU(LMCID, LMURI , t+1,

FLTraineri,t+1.address) then
3: Call DAOFLC.Record LMU (LMCID,

LMURI , t+ 1, FLTraineri,t+1.address)
4: end if
5: end procedure

Input: LMCID, LMURI , t+ 1, FLTraineri,t+1.address
1: procedure Record LMU
2: LM = Create new LMUs[t+1][FLTraineri,t+1.address]
3: Set LM.status = Submitted
4: Set LM.LMCID = LMCID
5: Set LM.LMURI = LMURI
6: Set LM.approvalvotes = LM.denyvotes = 0
7: Set LM.voters = empty AddressSet
8: end procedure

t + 1, where selector is derived from the Keccak-
256 hash of the “Initiate LMUs” function signature
in the DAOFLC. This starts the multi-signature
process outlined in Section IV-E for the proposal
“Initiate LMUs”. During its execution, the procedure
Initiate LMUs (Algo. 11) checks the status of the
DAOFLC.LMUactiveF flag. A true value indicates
that LMUs are accepted, while a false signifies LMUs
closure. If DAOFLC.LMUactiveF is false, it is
updated to true and the LMUsInitiated(t+ 1) event is
emitted, indicating the initiation of LMUs for GI t + 1.
FL-Trainers monitor this event to submit their LMUs.

• Step 9: FLTrainerst+1 concurrently initiate procedure

13

Algorithm 12 : DAOFLC - Continued
1: Caller: V DAOMi Modifier: onlyVDAOM
1: procedure voteLMU(FLTraineri,t+1.address, t+ 1, Vi)
2: Require:V DAOMi /∈ LMUs[t+ 1]

[FLTraineri,t+1.address].voters
3: if Vi == true then
4: Add Approval vote for V DAOMi

5: else
6: Add Deny vote for V DAOMi

7: end if
8: Count LM.approvalvotes and LM.denialvotes
9: Q = 60% ∗ n(DAOMT)

10: if LM.approvalvotes > Q then
11: Call FLTokenC.issueFLToken(FLTraineri,t+1)
12: Set LMUi,t+1.status == Rewarded
13: else if LM.denialvotes > Q then
14: Set LMUi,t+1.status == Denied
15: end if
16: end procedure

Caller: MultiSigC Modifier: onlyMultiSigC
1: procedure setLMUVDRF(t+ 1)
2: Set LMUVDRF [t+ 1] = true
3: end procedure
1: procedure UpdateGM(t+ 1, GMCID, tokenURI)
2: GMCIDsuccessF = Call FLNFTC.assignGMCID(

GMCID,FLNFTID)
3: TokenURIsuccessF = Call FLNFTC.assignTokenURI(

tokenURI, FLNFTID)
4: if GMCIDsuccessF and TokenURIsuccessF then
5: Emit GMupdated(t+ 1, GMCID, tokenURI)
6: Set DAOFLC.tokenURI = tokenURI
7: Set DAOFLC.GMCID = GMCID
8: Set GIC[t+ 1] = true
9: end if

10: end procedure

Algorithm 13 : MultiSigC
Owner: FLTP Deployer: FLTP
Input: DAOFLC.address, ODAOC.address

1: procedure MultiSigC Constructor
2: Set MultiSigC.owner = FLTP.address
3: end procedure

SEND LMU (Algo. 14) to commence their LMUs on
DAOFLC. Each FLTraineri,t+1 retrieves the latest GM
CID from DAOFLC.GMCID and downloads the cor-
responding GM (GMt) from IPFS. Utilizing their local
private dataset Di,t+1, FLTraineri,t+1, they compute
their local model LMUi,t+1 as [10], [17]:

wi
t+1 ← wt − ηgi, ∀i. (6)

Where gi is the local gradient of FLTraineri,t+1 on
Di,t+1, wt is the global parameter, η is learning rate, and
wi

t+1 is the local parameter. Subsequently, LMUi,t+1

is stored on IPFS, resulting in the associated CID
LMCID. Additionally, the JSON-encoded meta-data for
LMi,t+1 is generated and stored on IPFS, obtaining the
CID LMURI . FLTraineri,t+1 submits its LMU to
DAOFLC, using procedure uploadLM (Algo. 11), with
LMCID and LMURI as arguments. DAOFLC may
impose a limit on the number of LMUs allowed for GI
t+ 1.

• Step 10: The procedure uploadLM (Algo. 11) is insti-
gated by FLTraineri,t+1. DAOFLC.Authenticate LMU
function validates the LMUi,t+1, potentially rejecting it
if the LMUs limit is reached. If valid, LMUi,t+1 is
appended to the LMUs for GI t+1 and associated with the
FLTraineri,t+1 via procedure FLTPC.Record LMU
(Algo. 11). LM properties, such as approval and deny
votes, are set to 0, LM’s voter list is set to empty and
LM’s status is marked as “Submitted”.

• Step 11: The FLTP commences the procedure
Halt LMuploads (Algo. 6) to cease LMUs on
the DAOFLC. This instigates the procedure propose
(Algo. 4) with arguments like selector and t + 1,
where selector represents the selector for the
DAOFLC’s “Cease LMUs”. This triggers the multi-
signature process as detailed in Section IV-E for the
“Cease LMUs” proposal. The execution of this proposal
activates the procedure Cease LMUs (Algo. 11). If
LMUactiveF is true, it is changed to false, emitting
the LMUceased(t + 1) event. The LMUC flag is set
as true, indicating the cessation of LMUs for GI t + 1,
and FL-Trainers halt LM uploads.

• Step 12: After LMUs are ceased for t + 1, VDAOMs
in VDAO concurrently initiate the procedure
Review LMuploads (Algo. 15). In this procedure,
each V DAOMi downloads the LM uploaders’ addresses
using the function DAOFLC.Fetch LMUx(t + 1). For
each FLTraineri,t+1 in the fetched list, the VDAOM
downloads the corresponding LMU (LMUi,t+1)
using the function DAOFLC.Fetch LMU(t + 1,
FLTraineri,t+1). The V DAOMi checks LMUi,t+1

and casts an approval or denial vote by invoking
procedure DAOFLC.voteLMU (Algo. 12) with a
boolean vote argument Vi. True signifies approval, while
false indicates disapproval for LMUi,t+1. The total
approval and denial votes are counted as

LMapprovalvotes =
∑

Vi∈LM.voters

1Vi==true, (7)

and
LMdenialvotes =

∑
Vi∈LM.voters

1Vi==false (8)

respectively. The quorum Q is determined. If the
LMapprovalvotes exceed the Q, the procedure
FLTokenC.issueFLToken (Algo. 16) is utilized
to issue an FL-Token for FLTraineri,t+1, and the
LM status is set to “Rewarded”. However, if the
LMdenialvotes exceed the Q, the LM status is set to
“Denied”.

• Step 13: The FLTP initiates the procedure
Configure LMUVDRC (Algo. 6). Using the
selector of the “setLMUVDRF” function within the
DAOFLC and t+ 1 as arguments, the FLTP triggers the
multi-signature process as outlined in Section IV-E for
the “setLMUVDRF” proposal by invoking procedure
propose (Algo. 4). As part of executing this proposal,
the procedure setLMUV DRF (Algo. 12) is activated,
setting the flag LMUVDRF (t + 1) for GI t + 1 to

14

Algorithm 14 : FL-Trainer FLTraineri,t+1

1: procedure SEND LMU
2: Get DAOFLC.GMCID
3: Download GMt ← IPFS using DAOFLC.GMCID

4: Generate LMi,t+1 using [6]
5: LMCID = Store LMi,t+1 on IPFS
6: Create LMURI for LMi,t+1

7: LMURI = Store LMURI on IPFS
8: Call DAOFLC.uploadLM(LMCID,LMURI, t + 1)

9: end procedure

Algorithm 15 : VDAO member V DAOMi

1: procedure Review LMuploads
2: foreach FLTraineri,t+1 in DAOFLC.Fetch LMUx(t + 1)
3: LMUi,t+1 = Call DAOFLC.Fetch LMU(t+ 1,

FLTraineri,t+1.address)
4: Call DAOFLC.voteLMU(FLTraineri,t+1.address,

t+ 1, Vi)
5: end foreach
6: end procedure

Algorithm 16 : FLTokenC
Owner: DAOFLC Deployer: DAOFLC

1: procedure FLTokenC Constructor(name, symbol)
2: Set FLTokenC.owner = DAOFLC.address
3: Set FLTokenC.name = name
4: Set FLTokenC.symbol = symbol
5: end procedure
1: procedure issueFLToken(FLTraineri,t+1.address)
2: Mint 1 ∗ 1018 FLToken for FLTraineri,t+1

3: end procedure

signal the completion of LMUs’ verification, denial, or
reward process.

• Step 14: The FLTP initiates the Aggregate LMUs
procedure (Algo. 6). The approved and rewarded LMUs
from previous steps are denoted as ˆLMU t+1. The FLTP
computes GMt+1 using federated averaging (FedAvg) as
[10], [17]:

wt+1 ←
∑

i∈ ˆLMUt+1

ni

n
wi

t+1 (9)

where wi
t+1 is local parameter, wt+1 is global

parameter, ni = |Di|, and n =
∣∣⋃Di

∣∣ and stores it
on IPFS, yielding in CID GMCID. The updated
meta-data, encoded in JSON format, denoted as
FLNFT Metadatat+1, is created and stored on IPFS,
resulting in CID tokenURI . The FLTP then proposes the
“UpdateGM” using the procedure proposeUpdateGM
(propose) in Algo. 4 with arguments such as t + 1,
GMCID, and tokenURI . This triggers the multi-
signature process outlined in Section IV-E for the
proposal. During this process, ODAOMs aggregate

ˆLMU t+1 following predefined guidelines and approve
the proposal to certify its authenticity and accuracy.
During the execution of the proposal, the procedure
UpdateGM (Algo. 12) is called. This procedure sets the
GMCID and tokenURI of the FLNFT by invoking
the procedures FLNFTC.assignGMCID and
FLNFTC.assignTokenURI (Algo. 5) respectively
[17]. Only the registered OrchestratorAddress can exe-

Algorithm 17 : FL-NFT’s transfer
Caller: FLTP

1: procedure FLNFT TRANSFER(new owner)
2: Require: new owner != FLTP.address
3: Call FLNFTC.transferFrom(FLTP.address,

new owner, FLNFTID)
4: Call ODAOC.transferOwnership(new owner)
5: Call VDAOC.transferOwnership(new owner)
6: Call MultiSigC.transferOwnership(new owner)
7: Call DAOFLC.transferOwnership(new owner)
8: end procedure

cute these procedures. The FLNFTC.assignGMCID
verifies the submitted GMCID using the
FLNFTC.Verify GMCID function, ensuring unique
GMCIDs across all FL-NFTs. Similarly, the
FLNFTC.assignTokenURI verifies the submitted
tokenURI using the FLNFTC.Verify TokenURI
function, ensuring unique tokenURIs for all FL-NFTs.
The DAOFLC emits the event DAOFLC.GMupdated,
and the GIC[t+1] is flagged to indicate the completion
of GI t+ 1.

Step 1 of the above execution workflow is performed once
by the Regulator to establish the FL marketplace ecosystem.
For each FL task, Steps 2-7 are repeated to prepare the FL de-
centralized orchestrating space using the DAO-FL framework.
Steps 8-14 are repeated for each GI t+ 1 within an FL task.

G. Commercializing GM and Transferring ownership

The GM is tokenized to manage FL processes efficiently
and enable potential commercialization through platforms like
OpenSea. The trading involves transferring the FLNFT of
GM to the buyer. However, in DAO-FL, the FLTP, who
owns the FLNFT, also owns contracts like DAOFLC, Mul-
tiSigC, ODAOC, and VDAOC. To transfer GM’s owner-
ship to a new proprietor, the FLTP initiates the procedure
FLNFT Transfer (Algo. 17). This involves transferring
the FLNFT as well as ownership of DAOFLC, MultiSigC,
ODAOC, and VDAOC to the new owner.

V. IMPLEMENTATION, DEPLOYMENT, AND
EVALUATION

In this section, we present the implementation, deployment,
and evaluation aspects of the DAO-FL framework.
A. Implementation and Deployment

The smart contracts for the DAO-FL framework were devel-
oped using the Solidity programming language [24]. To visual-
ize the inheritance hierarchy of these contracts, we utilized the
Surya tool [25]. To enable membership in ODAO and VDAO,
we required a token standard known as NTT, such as EIP-4671
[26]. However, as NTT tokens are still in the early stages of
development and might not meet our specific requirements,
we created a custom smart contract called “DAOMTC” to
implement DAOMTs. The inheritance graph of DAOMTC,
illustrated in Fig. 6, demonstrates that DAOMTC is inherited
from customized OpenZeppelin [27] “Ownable” [28] and
“ERC165” contracts. Additionally, DAOMTC implements the

15

DAOMTC

Address

IERC721Receiver

Counters

Ownable

Context

IERC721Metadata

ERC165

IERC721

IERC165

ODAOC
IDAOMTC

DAOC

VDAOCODAOMTC VDAOMTC

EnumerableSet

EnumerableSetExtra

Strings

FLNFTC

ERC721Enumerable

ERC721

IERC721Enumerable

Fig. 6. Inheritance graph of the DAOC, DAOMTC, ODAOC, VDAOC, ODAOMTC, VDAOMTC, and FLNFTC.

DAOFLC FLTokenC IFLTokenC

Ownable

Context

ERC20

IERC20Metadata

IERC20

IFLNFTC IDAOMTC

MultiSigC Counters

EnumerableSet

EnumerableSetExtra

Fig. 7. Inheritance graph of the DAOFLC, MultiSigC, and FLTokenC.

IERC721Metadata interface. Since DOAMTs are NTT, certain
functions of the IERC721 interface are not applicable but
are included for compatibility with NFT-related platforms like
OpenSea. For efficient membership management in ODAO and
VDAO, we have introduced a specialized smart contract named
DAOC. By implementing generalized procedures for adding
or removing members in a DAO, DAOC serves the purpose
of both ODAO and VDAO. Inheritance-wise, DAOC extends
a customized “Ownable” contract [28], which itself inherits
from the “Context” contract [28]. Appendix B includes the
class diagram for DAOMTC and DAOC.

ODAO and VDAO are two distinct DAOs implemented
in ODAOC and VDAOC, respectively. These DAOs uti-
lize ODAOMTs and VDAOMTs as their respective mem-
bership tokens. ODAOMTs and VDAOMTs are implemented
in ODAOMTC and VDAOMTC respectively. The inheritance
graph in Fig. 6, reveals that ODAOC and VDAOC inherit
from DAOC, while ODAOMTC and VDAOMTC inherit from
DAOMTC. The detailed representation of the class diagrams
for ODAOC, ODAOMTC, VDAOC, and VDAOMTC is pro-
vided in Appendix C.

FLNFTC inherits functionalities from two sources: the
ERC721Enumerable standard [29] and the “Ownable” con-
tract [28]. Fig. 6 depicts the inheritance graph of FLNFTC.
FLTokenC is derived from the “Ownable” contract [28] and
the OpenZeppelin [27] ERC-20 implementation [30]. Both
DAOFLC and MultiSigC inherit from the “Ownable” contract
[28]. Fig. 7 illustrates the inheritance graph for DAOFLC,
MultiSigC, and FLTokenC. For a detailed class diagram for
DAOFLC, FLTokenC, FLNFTC, and MultiSigC, please refer

to Appendix C.
The smart contracts underwent compilation using the Hard-

hat [31]. The smart contracts were deployed on the Sepo-
lia testnet [32]. To ensure transparency, the deployed smart
contracts on the Sepolia network were verified using the
ETHERSCAN API KEY [33]. The gas utilized, gas price,
and transaction fee (in ethers) for deploying smart contracts
are illustrated in Fig. 8. It should be noted that the gas used
for ODAOMTC, VDAOMTC, and FLTokenC is encompassed
within the gas used for ODOAC, VDOAC, and DAOFLC,
respectively. For FLNFTC, the gas price was approximately
0.15 Gwei, which was comparatively high, possibly due to
network congestion during its deployment. As a result, the
elevated gas price led to a transaction fee of 0.00032 ETH.
Consequently, the gas price and transaction fee for FLNFTC
are not depicted in Fig. 8.

The Etherscan links of key entities (Regulator, FLTP, and
FLTrainer1,1) and smart contracts deployed on the Sepo-
lia network are presented in Table III. By examining these
addresses on Etherscan Explorer, users can gain access to
comprehensive information including event logs, internal and
external transaction logs, and verified contract codes [17].
Given the broader focus of our paper on establishing a decen-
tralized ecosystem for IV and OV of FL process through multi-
signature wallets and DAOs, we utilized the MNIST, Fashion-
MNIST, and UNB ISCX VPN-NonVPN network traffic [34]
dataset for training the local and global models. Consequently,
we will omit specific details related to model configuration,
accuracy information, and data allocation in this context. Due
to space constraints, some repetitive transactions required to
reach quorum have been omitted in some onward figures for
brevity.

As the procedures for member enrollment and expulsion are
the same for ODAOC and VDAOC, we present the implemen-
tation results for ODAOC. Fig. 9 illustrates the transaction
list for a “Join Proposal” (JP), including the “proposeJoin”
transaction initiated by ODAOMp and the “voteJoin” trans-
actions by ODAOMs. It also captures the relevant events
emitted by ODAOC, such as JPsubmitted, JPdenialVote, and
JPapprovalVote. Additionally, Fig. 10 showcases the minting
of ODAOMT upon reaching the quorum, accompanied by
the events “JPapproved” emitted by ODAOC to indicate JP
approval and the “Transfer” event indicating the transfer

16

Fig. 8. Gas Used, Gas Price, and transaction fee (in ETH) for the deployment of smart contracts.

TABLE III
PARAMETERS

Parameter Value on Sepolia
Regulator.etherscan https://sepolia.etherscan.io/address/0x8fa37ecf3d89361e60e7e6adf55485ae62cd72b2
FLTP.etherscan https://sepolia.etherscan.io/address/0xa0969AeA747c336b49256CFC4Cc2F6E265F6B722
FLNFTC.etherscan https://sepolia.etherscan.io/address/0x37d18bd11e20774e9BE7c22647156564975CAe6b
ODAOC.etherscan https://sepolia.etherscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f
ODAOMTC.etherscan https://sepolia.etherscan.io/address/0xDfF3E610ce7DCb727150E1351c44e58154E28108
V DAOC.etherscan https://sepolia.etherscan.io/address/0x1d9Cebd90Aa66068cD9FD3d75479DbDeDA65ebeB
V DAOMTC.etherscan https://sepolia.etherscan.io/address/0x5303b5a16655C69D7914cf6fcdF5A5429C41279F
DAOFLC.etherscan https://sepolia.etherscan.io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429
FLTokenC.etherscan https://sepolia.etherscan.io/address/0x13C3A1a153F7C50a018177aeaC5D70D98A3B2c2C
MultiSigC.etherscan https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0
FLTrainer1,1.etherscan https://sepolia.etherscan.io/address/0xff0e2447422da30927fd079d75dd985cf0cd21e1

Fig. 9. Transaction sequence (DAOC.proposeJoin and DAOC.voteJoin) and emitted events for a “Join Proposal” on ODAOC (https://sepolia.ethersca
n.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f), [Block 3815817-3815822].

Fig. 10. Minting of ODAOMT after reaching the quorum of approval votes for “Join Proposal” and corresponding events emitted on ODAOC (https:
//sepolia.etherscan.io/tx/0x08d720a7101486f789952ce09e72cb0bf56ce8863994d3eacf957a29d0a1ea6a).

of ODAOMT to the candidate, emitted by ODAOMTC.
Similarly, Fig. 11 presents the transaction list for a “Kick
Proposal” (KP), which includes the “proposeKick” transaction
initiated by ODAOMp and the “voteKick” transactions by
ODAOMs. The associated events emitted by ODAOC, such

as KPsubmitted, KPdenialVote, and KPapprovalVote, are also
captured. Furthermore, Fig. 12 showcases the burning of
ODAOMT upon reaching the quorum, along with the events
“KPapproved” emitted by ODAOC to indicate KP approval
and the “Transfer” event signifying the burning of ODAOMT

https://sepolia.etherscan.io/address/0x8fa37ecf3d89361e60e7e6adf55485ae62cd72b2
https://sepolia.etherscan.io/address/0xa0969AeA747c336b49256CFC4Cc2F6E265F6B722
https://sepolia.etherscan.io/address/0x37d18bd11e20774e9BE7c22647156564975CAe6b
https://sepolia.etherscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f
https://sepolia.etherscan.io/address/0xDfF3E610ce7DCb727150E1351c44e58154E28108
https://sepolia.etherscan.io/address/0x1d9Cebd90Aa66068cD9FD3d75479DbDeDA65ebeB
https://sepolia.etherscan.io/address/0x5303b5a16655C69D7914cf6fcdF5A5429C41279F
https://sepolia.etherscan.io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429
https://sepolia.etherscan.io/address/0x13C3A1a153F7C50a018177aeaC5D70D98A3B2c2C
https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0
https://sepolia.etherscan.io/address/0xff0e2447422da30927fd079d75dd985cf0cd21e1
https://sepolia.etherscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f
https://sepolia.etherscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f
https://sepolia.etherscan.io/tx/0x08d720a7101486f789952ce09e72cb0bf56ce8863994d3eacf957a29d0a1ea6a
https://sepolia.etherscan.io/tx/0x08d720a7101486f789952ce09e72cb0bf56ce8863994d3eacf957a29d0a1ea6a

17

Fig. 11. Transaction sequence (DAOC.proposeKick and DAOC.voteKick) and emitted events for a “Kick Proposal” on ODAOC (https://sepolia.ethe
rscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f), [Block 3815823-3815828].

Fig. 12. Burning of ODAOMT after reaching the quorum of approval votes for “Kick Proposal” and corresponding events emitted on ODAOC (https:
//sepolia.etherscan.io/tx/0x7de873fc9bdfb1fca45ad560430eff5ee4778e821fd1e8d981c12a6f1c099da3).

Fig. 13. Transaction sequence for the creation and execution of the “createFLNFT” proposal on MultiSigC, along with emitted events (https://sepolia.ethers
can.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0), Block [3829542-3829547].

owned by the candidate, emitted by ODAOMTC.

Onwards in this section, we present the implementa-
tion of the DAO-FL framework, following the steps out-
lined in Section IV-F. Fig. 13 depicts the creation of
a “createFLNFT” proposal by FLTP using the procedure
FLTP.Generate FLNFT through the transaction “pro-
posecreateFLNFT” on MultiSigC. It also includes one of
the “approve” transactions by ODAOMs and the subsequent
execution of the “createFLNFT” proposal by FLTP upon
reaching quorum. The corresponding events emitted by Mul-
tiSigC, such as createFLNFTpCreated, ProposalApprovalSub-
mitted, ProposalExecutable, and ProposalExecuted, are also
shown. Fig. 14 demonstrates the minting of FLNFT following
the execution of the “createFLNFT” proposal. The events
emitted by FLNFTC, including OrchestratorAddressSet, GM-
CIDset, and TokenURIset, are displayed. Additionally, the
event FLNFTcreated emitted by DAOFLC is depicted. Fig. 15
illustrates the creation and execution of the “Initiate LMUs”
proposal by FLTP, following its approval by ODAOMs. The
figure also includes the emitted events, such as Proposal-
Created and ProposalExecuted by MultiSigC, and LMUsIni-

tiated by DAOFLC. After listening to the LMUsInitiated
event, FLTrainerst+1 uploads LMs through the “uploadLM”
transaction on DAOFLC, as depicted in Fig. 16. The event
“LMuploaded” emitted by DAOFLC during a transaction is
also shown.

The illustration of the creation and execution of the
“Cease LMUs” proposal will be omitted. However, after its
execution, VDAOMs engage in the crucial task of IV for
the FL process. This is achieved through the initiation of
“voteLMU” transactions, as illustrated in Fig. 17. The events
LMUvoted, LMURewarded, and LMUdenied are emitted by
DAOFLC which signifies the validation process of LMUs.
Furthermore, the successful validation results in the minting
of FLTokens, as indicated by the “Transfer” event emitted by
FLTokenC for a FLTraineri,t+1.

We will omit the illustration of the execution of “setL-
MUADRF” proposal. However, after the execution of pro-
posal “setLMUVDRF”, FLTP submits proposal “UpdateGM”
to MultiSigC as shown in Fig 18 where event UpdateGM-
pCreated is emitted. The proposal goes through the approval
process by ODAOMs as DOV of the FL process and is

https://sepolia.etherscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f
https://sepolia.etherscan.io/address/0xf002f304Cb1C34b40d59347472f2f68Fc882e61f
https://sepolia.etherscan.io/tx/0x7de873fc9bdfb1fca45ad560430eff5ee4778e821fd1e8d981c12a6f1c099da3
https://sepolia.etherscan.io/tx/0x7de873fc9bdfb1fca45ad560430eff5ee4778e821fd1e8d981c12a6f1c099da3
https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0
https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0

18

Fig. 14. Minting of FLNFT and emitted events during the execution of the “createFLNFT” proposal (https://sepolia.etherscan.io/tx/0x93e76ce42d9b76f6b4
ede511e262e7ac9d77e5079f2cd0171e8e2e554d231a7a).

Fig. 15. Execution of the “Initiate LMUs” proposal by FLTP, and emitted events by MultiSigC and DAOFLC (https://sepolia.etherscan.io/address/0x7001b
7f257EEDF4b970577c63095909916BD0cc0), Block [3829902-3829908].

Fig. 16. Uploading of LM on DAOFLC by FLTrainerst+1 (https://sepolia.etherscan.io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429)
and event emitted, Block [3837066-3837082].

Fig. 17. Decentralized input verification of LMUs by VDAOMs for the FL process, minting of FLToken and other events emitted (https://sepolia.etherscan.
io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429), Block [3838201-3838281].

finally executed. The events emitted are ProposalExecuted
by MultiSigC, GMupdated by DOAFLC, and GMCIDset and
TokenURIset by FLNFTC which shows that FLNFT has been
updated.

B. Evaluation on Threat Models

In the context of information flows, vulnerabilities can arise
at the input or output stages. Input vulnerabilities involve dis-
crepancies between submitted inputs and prescribed policies.
For the FL process, input attacks could manifest as submitting
inaccurate or malicious LMs, potentially compromising the FL
server to accept it for potential incorporation into upcoming

GM, thereby jeopardizing GM’s accuracy. Output vulnerabil-
ities pertain to non-compliance of the produced outputs with
information flow policies or post-production tampering. In the
FL process, this output attack translates to scenarios like aggre-
gation attacks or GM tampering after aggregation. Aggregation
attacks occur when LMs are aggregated incorrectly to a GM.
Post-production GM tampering occurs when the produced GM
is replaced by a malicious one.

Fig. 19 depicts test accuracy trends of DAO-FL and
centralized-FL subject to input, output, and input & output
attacks on MNIST and Fashion-MNIST datasets for image
classification and UNB ISCX VPN-NonVPN network traffic

https://sepolia.etherscan.io/tx/0x93e76ce42d9b76f6b4ede511e262e7ac9d77e5079f2cd0171e8e2e554d231a7a
https://sepolia.etherscan.io/tx/0x93e76ce42d9b76f6b4ede511e262e7ac9d77e5079f2cd0171e8e2e554d231a7a
https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0
https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0
https://sepolia.etherscan.io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429
https://sepolia.etherscan.io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429
https://sepolia.etherscan.io/address/0x21314B8830c7FE06d0B0DAe0c7935794D77FD429

19

Fig. 18. Creation and execution of proposal “UpdateGM” after DOV by ODAOMs (https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c6309
5909916BD0cc0) and events emitted, Block [3843770-3843775].

TABLE IV
AVERAGE TRANSACTION COST FOR CENTRALIZED VS DECENTRALIZED

IV AND OV ON PUBLIC AND PRIVATE BLOCKCHAIN

Input
Verification

Output
Verification

FL-Incentivizer
(Centralized)

Public
blockchain

0.000140322
ETH

0.00017406
ETH

Private
blockchain

0 0

DAO-FL
(Decentralized)

Public
blockchain

0 0

Private
blockchain

0.001080806
ETH

0.00159984
ETH

dataset [34] for network traffic classification [35] (E = 10
local epochs, N = 10 FL-Trainers per global epoch). Fig.
19(a, c, d, f, g, i) underscore DAO-FL’s robustness to input
attacks, as it rejects malicious LMs through DIV via VDAO,
maintaining GM accuracy. DAO-FL closely matches the accu-
racy of attack-free-FL, particularly nearing convergence. The
slight accuracy drop in DAO-FL (upon input attack) versus
attack-free-FL results from the diversity of accurate LMs in
attack-free-FL, while in DAO-FL, global parameters are biased
towards approved LMs. In contrast, centralized-FL reliant on a
single manipulable server, loses accuracy under input attacks.
Fig. 19(b, c, e, f, h, i) show DAO-FL strictly maintaining
accuracy under output attack. This resilience stems from the
ODAO’s vigilance through DOV by rejecting malicious “Up-
dateGM” proposals. The ODAO enforces the FLTP for alterna-
tive accurate “UpdateGM” proposals. Conversely, centralized
FL, prone to tampering or aggregation attacks, experiences
accuracy deterioration. These illustrations show that DAO-FL
outperforms in countering input and output attacks.

Both input and output attacks in centralized FL lead to a
decline in accuracy. After an attack, the GM may or may not
be able to recover its original accuracy. These attacks compro-
mise accuracy, introduce bias, or halt the FL process due to
learning failures such as vanishing or exploding gradients. The
learning failures are evident for centralized-FL in Fig. 19(c,f)
at epoch=10 and Fig. 19(i) at epoch=250 onwards. Preventing
these attacks is pivotal for the success of the FL process.

C. Qualitative Evaluation and Discussion

Our proposed framework provides a secure management
solution for FL process. The involvement of multiple stake-
holders, including regulators, FLTP, ODAO, and VDAO, fa-
cilitates decentralized governance and decision-making. This
enables a more democratic and diverse approach to managing
the FL process. DAO-FL framework utilizes smart contracts
ODAOC and VDAOC to manage membership in ODAO
and VDAO respectively. It leverages minting and burning of
membership tokens for enrollment and expulsion procedures.
These membership operations are decentralized relying on
voting mechanisms to execute “Join Proposals” and “Kick
Proposals”.

DAO-FL is compatible with any underlying FL algorithm,
just the validation of LMs and GM will be through DIV and
DOV according to the prescribed security protocol of the FL
algorithm. DAO-FL incorporates IV through the validation
of LMUs by VDAOMs. This process enhances the trustwor-
thiness of the FL process by allowing participants to verify
the quality and integrity of the submitted LMs. The level of
decentralization in ODAO is directly correlated with the total
supply of ODAOMTC. As the total supply of ODAOMTC
increases, the decentralization in OV of FL process also
increases. Similarly, the decentralization in VDAO is directly
tied to the total supply of VDAOMTC. An elevated total sup-
ply of VDAOMTC fosters increased decentralization in the IV
of FL process. In scenarios prioritizing high decentralization,
especially in prominent FL setups, the trade-off of increased
time and high cumulative transaction fees to reach the quorum
becomes acceptable as the ODAOMTC or VDAOMTC supply
increases.

In DAO-FL, the ODAO only approves proposals in a
decentralized fashion, The actual execution of these proposals
remains under the responsibility of FLTP, resulting in a par-
tially decentralized orchestration of the FL process. To attain
full decentralization orchestration, a potential solution involves
substituting FLTP with an the Executer-DAO, coupled with
an appropriate multi-signature contract. This arrangement can
facilitate the decentralized execution of approved proposals,
thereby achieving a fully decentralized orchestration paradigm.

https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0
https://sepolia.etherscan.io/address/0x7001b7f257EEDF4b970577c63095909916BD0cc0

20

Fig. 19. Threat Evaluation of Input, Output, and Input & Output Attacks on DAO-FL, and centralized-FL (N=10, E=10).

FL inherently safeguards raw data access, with the GM typ-
ically considered secure against sophisticated data leaks. How-
ever, LMs remain vulnerable to data leaks through inference
attacks. In DAO-FL, authentication via VDAOMT restricts
access to LMs to authorized VDAO members through smart
contract interfaces. While the proposed DAO-FL framework
operates on a public blockchain, still posing a risk of access
by malicious actors to LMs, integrating privacy-preserving
techniques such as differential privacy at the LM level can
bolster data security and mitigate the potential for data leaks.

The innovative principles and technologies embedded in
DAO-FL offer a versatile framework that extends beyond its
original context. Beyond FL, DAOMTs can be universally
utilized as proof of membership in diverse DAOs. The pro-
posed decentralized enrollment and expulsion schemes hold
relevance across various DAO implementations. The versatility
of smart contracts like MultiSigC and DAOFLC is evident, as
with thoughtful adaptation of requirements and nomenclature
of proposals to be executed, they can be used to enable
partially decentralized orchestration for a wide spectrum of
information flows. Additionally, the efficacy of the proposed
quorum-based DIV and DOV mechanisms is not confined to

the realm of FL alone. These mechanisms can be adapted
to suit the specific needs of diverse information flows that
necessitate decentralized decision-making, ensuring their ap-
plicability across a broad array of information flows.

D. Applicability, Limitations, and Future directions

With its decentralized governance and validation mecha-
nisms, DAO-FL is particularly well-suited for industries that
prioritize the integrity of the GM and the FL process. Sectors
such as healthcare and finance, where privacy, transparency,
and security are critical, can benefit greatly from DAO-FL’s
decentralized approach. By instilling trust in FL processes,
DAO-FL ensures compliance with regulations and safeguards
AI systems. Moreover, in industries like supply chain man-
agement and logistics, DAO-FL enables seamless collabo-
ration among stakeholders while preserving GM integrity.
Although DAO-FL, in its current proposed form, prioritize
AI model security over rapid learning times and low costs,
it offers significant advantages in sectors where data integrity
is paramount. Furthermore, in industries susceptible to cyber
attacks, such as critical infrastructure or defense, DAO-FL’s
decentralized validation mechanisms can effectively mitigate

21

risks and enhance system resilience. This makes it a valuable
solution for safeguarding intellectual property and ensuring
the reliability of machine-learning models in high-risk envi-
ronments.

Despite its potential benefits, DAO-FL faces significant
limitations that impede its widespread adoption, particularly
within real-time and time-sensitive applications. Industries
such as high-frequency trading or autonomous vehicles, which
demand low-latency decision-making, may find DAO-FL less
applicable due to inherent complexities and higher associated
transaction costs stemming from its decentralized nature. No-
tably, challenges such as non-deterministic response times,
reliance on blockchain network constraints, intricate valida-
tion processes, and data transfer overhead, collectively pose
obstacles to its suitability for swift decision-making scenarios.
Furthermore, the decentralized nature of DAO-FL introduces
variability in response times, rendering it unsuitable for real-
time FL applications, thus underscoring the necessity for
further research and optimization endeavors.

The cost analysis of DAO-FL is intricate due to the
multitude of factors impacting transaction costs on a public
blockchain. These expenditures are contingent upon variables
such as gas fee, gas price, and network congestion, which
lack determinism. The quantity of transactions necessitated
to attain a quorum also relies on the existing supply of
ODOMTs and VDAOMTs. Moreover, in times of heightened
network congestion, gas prices have a propensity to escalate.
Table IV lists the average transaction cost for FL-Incentivizer
(centralized) and DAO-FL (decentralized) for IV and OV of
an LM and a GM respectively on public (Sepolia) as well as
private blockchain. The transaction cost for DIV and DOV
is higher than centralized IV and OV on a public blockchain.
Nevertheless, in the context of a private blockchain, transaction
costs can be mitigated to zero. It is crucial to acknowledge that
although private blockchains typically entail no transaction
costs, there exists an initial setup cost linked to establishing the
network infrastructure. Moreover, the transformation of GM
into FLNFT for commercial purposes may not be viable on
a private blockchain. The elevated transaction costs correlated
with DAO-driven solutions on public blockchains frequently
pose a common challenge attributable to on-chain voting
mechanisms.

To mitigate the constraints of DAO-FL and enhance its
viability across industries, various strategic avenues can be
explored. Implementing off-chain voting mechanisms, exem-
plified by platforms like Snapshot and Aragon, can effectively
reduce on-chain transaction costs associated with DIV and
DOV. Additionally, techniques such as gas optimization and
the adoption of layer-2 scaling solutions like state channels
or Plasma hold promise in optimizing transaction fees and
alleviating congestion on the primary blockchain network. Fur-
thermore, concerted efforts to streamline validation processes,
minimize data transfer overhead, and refine consensus mech-
anisms can collectively amplify the efficiency and respon-
siveness of DAO-FL, particularly in real-time applications.
By proactively addressing these challenges and embracing
innovative solutions, DAO-FL can transcend its limitations,
thereby unlocking its full potential across diverse industry

sectors.

E. Case Studies

These case studies or usage scenarios illustrate how DAO-
FL can effectively prevent and respond to input and output
attacks in FL in various real-world scenarios:

1) Inventory and Logistics Operations in Supply Chain
Management: In the dynamic landscape of Supply Chain
Management (SCM), DAO-FL emerges as a transformative
solution by integrating DIV and DOV mechanisms to fortify
FL processes. Imagine a scenario where multiple stakeholders
in a global supply chain network collaborate in a FL setup
to optimize inventory management and streamline logistics
operations. By leveraging DAO-FL, these stakeholders se-
curely share LMs for collaborative model training, ensuring
the authenticity and integrity of inputs through decentralized
validation. In this setting, malicious actors attempting to
inject incorrect LMs or manipulate the GM face formidable
barriers, as DAO-FL’s robust verification protocols detect and
respond to potential attacks swiftly, safeguarding the accuracy
of SCM predictions and preserving the integrity of decision-
making processes, thereby enhancing operational efficiency
and resilience in the supply chain ecosystem.

2) Fraud Detection in Financial Institutions: In financial
institutions, FL systems play a crucial role in detecting fraud
while protecting customer confidentiality. To bolster fraud
detection while adhering to privacy regulations, banks can
collaborate to perform FL under regulatory oversight, such
as the state bank, employing DAO-FL for collaborative fraud
detection. At the end of a specified period (e.g., day, week,
or month), participating banks train their LMs on the latest
transaction data and securely share these models as per the
DAO-FL guidelines. The GM is then generated based on
the aggregated LMs. However, Malicious actors may submit
incorrect LMs or perform output attacks on GM to destabilize
the fraud detection system. By leveraging decentralized mech-
anisms such as DIV and DOV for verifying the reliability and
transparency of LMs and GM updates, DAO-FL strengthens
fraud prevention measures. This proactive approach aids in
effectively detecting and responding to fraudulent activities,
thereby safeguarding customer interests and upholding the
integrity of financial transactions.

VI. CONCLUSION

This article proposed the DAO-FL framework, a ground-
breaking approach to decentralized autonomous organizations
for enhancing FL processes. By incorporating decentralized
input verification and output verification mechanisms, DAO-
FL ensures the integrity and security of the FL ecosystem.
The utilization of DAO Membership Tokens (DAOMTs) and
smart contracts like MultiSigC and DAOFLC demonstrates
the framework’s adaptability and versatility. Its decentralized
governance structures, involving various stakeholders and val-
idation mechanisms, provide a transparent and democratic
framework for managing FL processes. The qualitative eval-
uation under different threat models showcases DAO-FL’s

22

superiority over traditional centralized-FL approaches, partic-
ularly in scenarios requiring decentralized verification. Dis-
cussions on applicability across industries, transaction costs,
and future directions underscore the framework’s potential
impact and scalability. In essence, DAO-FL is a robust solution
that strengthens FL integrity through decentralized decision-
making and validation mechanisms, setting a new standard for
decentralized orchestration in information flows.

APPENDIX A
DEMONSTRATIVE METADATA FOR FL-NFT, ODAOMT,

AND VDAOMT
• Explore the FL-NFT’s metadata at https://ipfs.io/ipfs/Qma

CtmSJZrYXt9BQtZfk62zo5wzsQWW4ZpeF9cJ5USQFWE.
• Explore the metadata of ODAOMT at https://ipfs.io/ipfs/Q

mNPqQqiC1dwADZ2FLwtUi2nGi5CdkYxzZNEaroc3ZUS7R.
• Explore the metadata of VDAOMT at https://ipfs.io/ipfs/Q

mRrHTzcCJvFDWVq9DUnUTgxnCNyWUAANy8TyMRMe
QhPp3.

APPENDIX B
DAOMTC AND DAOC UML DIAGRAM

See the UML diagram at https://github.com/umermajeedkhu
/DAOFLcode/blob/main/UML/appendixB.pdf.

APPENDIX C
ODAOMTC, ODAOC, VDAOMTC, VDAOC,

FLTOKENC, DAOFLC, FLNFT, AND MULTISIGC UML
DIAGRAM

See the UML diagram at https://github.com/umermajeedkhu
/DAOFLcode/blob/main/UML/appendixC.pdf.

REFERENCES

[1] U. Majeed, L. U. Khan, I. Yaqoob, S. A. Kazmi, K. Salah, and
C. S. Hong, “Blockchain for IoT-based smart cities: Recent advances,
requirements, and future challenges,” Journal of Network and Computer
Applications, vol. 181, p. 103007, May 2021.

[2] R. Qin, W. Ding, J. Li, S. Guan, G. Wang, Y. Ren, and Z. Qu, “Web3-
Based Decentralized Autonomous Organizations and Operations: Ar-
chitectures, Models, and Mechanisms,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 53, no. 4, pp. 2073–2082, Apr.
2023.

[3] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F. Wang,
“Blockchain-Enabled Smart Contracts: Architecture, Applications, and
Future Trends,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 49, no. 11, pp. 2266–2277, Nov. 2019.

[4] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475 – 491, Apr.
2020.

[5] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “Decen-
tralized Autonomous Organizations: Concept, Model, and Applications,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 5, pp.
870–878, Oct. 2019.

[6] E. G. Weyl, P. Ohlhaver, and V. Buterin, “Decentralized Society:
Finding Web3’s Soul,” Available at SSRN 4105763, May 2022.
[Online]. Available: https://ssrn.com/abstract=4105763

[7] T. J. Chaffer and J. Goldston, “On the Existential Basis of Self-Sovereign
Identity and Soulbound Tokens: An Examination of the “Self” in the Age
of Web3,” Journal of Strategic Innovation and Sustainability, vol. 17,
no. 3, Nov. 2022.

[8] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-Fungible Token
(NFT): Overview, Evaluation, Opportunities and Challenges,” Oct. 2021,
arXiv:2105.07447.

[9] A. Musamih, I. Yaqoob, K. Salah, R. Jayaraman, M. Omar, and
S. Ellahham, “Using NFTs for Product Management, Digital Certifi-
cation, Trading, and Delivery in the Healthcare Supply Chain,” IEEE
Transactions on Engineering Management, vol. 71, pp. 4480–4501, Nov.
2024.

[10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, Apr.
2017, pp. 1273–1282.

[11] Z. Qin, J. Ye, J. Meng, B. Lu, and L. Wang, “Privacy-Preserving
Blockchain-Based Federated Learning for Marine Internet of Things,”
IEEE Transactions on Computational Social Systems, vol. 9, no. 1, pp.
159–173, Feb. 2022.

[12] U. Majeed and C. S. Hong, “FLchain: Federated Learning via MEC-
enabled Blockchain Network,” in 20th Asia-Pacific Network Operations
and Management Symposium (APNOMS), Matsue, Japan, Sep. 2019.

[13] T. Zeng, O. Semiari, M. Chen, W. Saad, and M. Bennis, “Federated
Learning on the Road Autonomous Controller Design for Connected
and Autonomous Vehicles,” IEEE Transactions on Wireless Communi-
cations, vol. 21, no. 12, pp. 10 407–10 423, Dec. 2022.

[14] A. Trask, E. Bluemke, B. Garfinkel, C. G. Cuervas-Mons, and A. Dafoe,
“Beyond Privacy Trade-offs with Structured Transparency,” Dec. 2020,
arXiv:2012.08347.

[15] U. Majeed, L. U. Khan, A. Yousafzai, Z. Han, B. J. Park, and C. S. Hong,
“ST-BFL: A Structured Transparency Empowered Cross-Silo Federated
Learning on the Blockchain Framework,” IEEE Access, vol. 9, pp.
155 634–155 650, Nov. 2021.

[16] N. Z. Aitzhan and D. Svetinovic, “Security and Privacy in Decentralized
Energy Trading Through Multi-Signatures, Blockchain and Anonymous
Messaging Streams,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 840–852, Oct. 2018.

[17] U. Majeed, L. U. Khan, S. S. Hassan, Z. Han, and C. S. Hong, “FL-
Incentivizer: FL-NFT and FL-Tokens for Federated Learning Model
Trading and Training,” IEEE Access, vol. 11, pp. 4381–4399, Jan. 2023.

[18] E. Bluemke, T. Collins, B. Garfinkel, and A. Trask, “Exploring the
Relevance of Data Privacy-Enhancing Technologies for AI Governance
Use Cases,” Mar. 2023, arXiv:2303.08956.

[19] M. I. Lunesu, R. Tonelli, A. Pinna, and S. Sansoni, “Soulbound
Token for Covid-19 Vaccination Certification,” in IEEE International
Conference on Pervasive Computing and Communications Workshops
and other Affiliated Events (PerCom Workshops), Atlanta, GA, USA,
Mar. 2023, pp. 243–248.

[20] U. Tejashwin, S. J. Kennith, R. Manivel, K. C. Shruthi, and M. Nirmala,
“Decentralized Society: Student’s Soul Using Soulbound Tokens,” in
International Conference for Advancement in Technology (ICONAT),
Goa, India, Jan. 2023.

[21] N. Diallo, W. Shi, L. Xu, Z. Gao, L. Chen, Y. Lu, N. Shah, L. Carranco,
T.-C. Le, A. B. Surez, and G. Turner, “eGov-DAO: a Better Govern-
ment using Blockchain based Decentralized Autonomous Organization,”
in 2018 International Conference on eDemocracy & eGovernment
(ICEDEG), Ambato, Ecuador, Apr. 2018, pp. 166–171.

[22] W. Ding, J. Hou, J. Li, C. Guo, J. Qin, R. Kozma, and F.-Y. Wang,
“DeSci Based on Web3 and DAO: A Comprehensive Overview and
Reference Model,” IEEE Transactions on Computational Social Systems,
vol. 9, no. 5, pp. 1563–1573, Oct. 2022.

[23] Y. Xiao, P. Zhang, and Y. Liu, “Secure and efficient multi-signature
schemes for fabric: An enterprise blockchain platform,” IEEE Transac-
tions on Information Forensics and Security, vol. 16, pp. 1782–1794,
Dec. 2021.

[24] R. Modi, Solidity Programming Essentials: A guide to building smart
contracts and tokens using the widely used Solidity language. Packt
Publishing, 2022.

[25] “Surya, The Sun God: A Solidity Inspector,” Accessed: July 20, 2023.
[Online]. Available: https://github.com/ConsenSys/surya

[26] Ethereum Magicians forum, “EIP-4671: Non-tradable Token,” Accessed:
July 20, 2023. [Online]. Available: https://ethereum-magicians.org/t/eip
-4671-non-tradable-token/7976

[27] “OpenZeppelin: The premier crypto cybersecurity technology and
services company,” Accessed: July 20, 2023. [Online]. Available:
https://openzeppelin.com

[28] “OpenZeppelin ownable implementation,” Accessed: July 20, 2023.
[Online]. Available: https://github.com/OpenZeppelin/openzeppelin-con
tracts/blob/master/contracts/access/Ownable.sol

[29] “OpenZeppelin ERC721 implementation,” Accessed: July 20, 2023.
[Online]. Available: https://github.com/OpenZeppelin/openzeppelin-con
tracts/blob/master/contracts/token/ERC721/ERC721.sol

[30] “OpenZeppelin ERC20 implementation,” Accessed: July 20, 2023.
[Online]. Available: https://github.com/OpenZeppelin/openzeppelin-con
tracts/blob/master/contracts/token/ERC20/ERC20.sol

https://ipfs.io/ipfs/QmaCtmSJZrYXt9BQtZfk62zo5wzsQWW4ZpeF9cJ5USQFWE
https://ipfs.io/ipfs/QmaCtmSJZrYXt9BQtZfk62zo5wzsQWW4ZpeF9cJ5USQFWE
https://ipfs.io/ipfs/QmNPqQqiC1dwADZ2FLwtUi2nGi5CdkYxzZNEaroc3ZUS7R
https://ipfs.io/ipfs/QmNPqQqiC1dwADZ2FLwtUi2nGi5CdkYxzZNEaroc3ZUS7R
https://ipfs.io/ipfs/QmRrHTzcCJvFDWVq9DUnUTgxnCNyWUAANy8TyMRMeQhPp3
https://ipfs.io/ipfs/QmRrHTzcCJvFDWVq9DUnUTgxnCNyWUAANy8TyMRMeQhPp3
https://ipfs.io/ipfs/QmRrHTzcCJvFDWVq9DUnUTgxnCNyWUAANy8TyMRMeQhPp3
https://github.com/umermajeedkhu/DAOFLcode/blob/main/UML/appendixB.pdf
https://github.com/umermajeedkhu/DAOFLcode/blob/main/UML/appendixB.pdf
https://github.com/umermajeedkhu/DAOFLcode/blob/main/UML/appendixC.pdf
https://github.com/umermajeedkhu/DAOFLcode/blob/main/UML/appendixC.pdf
https://ssrn.com/abstract=4105763
https://github.com/ConsenSys/surya
https://ethereum-magicians.org/t/eip-4671-non-tradable-token/7976
https://ethereum-magicians.org/t/eip-4671-non-tradable-token/7976
https://openzeppelin.com
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/ERC721.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC721/ERC721.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol

23

[31] Nomic Foundation, “Hardhat - Ethereum development environment for
professionals,” 2021, Accessed: July 20, 2023. [Online]. Available:
https://hardhat.org/

[32] “Sepolia Test Network,” Accessed: July 20, 2023. [Online]. Available:
https://sepolia.etherscan.io/

[33] Etherscan, “Etherscan APIs,” Accessed: July 20, 2023. [Online].
Available: https://etherscan.io/apis

[34] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, and A. A. Ghorbani,
“Characterization of Encrypted and VPN Traffic using Time-related
Features,” in Proceedings of the 2nd International Conference on
Information Systems Security and Privacy (ICISSP), Rome, Italy, 2016,
pp. 407–414.

[35] U. Majeed, L. U. Khan, and C. S. Hong, “Cross-Silo Horizontal Fed-
erated Learning for Flow-based Time-related-Features Oriented Traffic
Classification,” in 21st Asia-Pacific Network Operations and Manage-
ment Symposium (APNOMS), Daegu, Korea (South), Oct. 2020, pp. 389–
392.

Umer Majeed received his BS degree in Electrical
Engineering from the National University of Science
and Technology, Pakistan, in 2015. He is currently
pursuing his Ph.D. degree in Computer Science and
Engineering at Kyung Hee University, South Korea.
Mr. Majeed has served as the Technical Program
Committee Member of the Edge Intelligence for
Internet of Things Workshop during the 20th Inter-
national Conference on Wireless Communications
and Mobile Computing (IWCMC), 2024. His re-
search interests span a wide spectrum, encompassing

Blockchain, Web3, Smart Contracts, Non-Fungible Tokens, Decentralized
Autonomous Organizations, Structured Transparency, Private & Secure AI,
Internet of Things, Edge Computing & Intelligence, Smart Cities, and Feder-
ated Learning.

Sheikh Salman Hassan (S’14, M’24) received his
B.S. degree in Electrical Engineering with magna
cum laude honors from the National University
of Computer and Emerging Sciences, Pakistan, in
2017 and the Ph.D. degree in Computer Science
and Engineering from Kyung Hee University, Seoul,
South Korea, in 2024. Currently, Dr. Hassan holds a
Postdoctoral Research Fellowship position with the
Networking Intelligence Lab at Kyung Hee Univer-
sity. Dr. Hassan has served as the Technical Program
Committee (TPC) Member of the Edge Intelligence

for Internet of Things Workshop during the 20th International Conference
on Wireless Communications and Mobile Computing (IWCMC), 2024. His
research interests lie in the areas of 6G networks, non-terrestrial networks
(NTNs), the Internet of Everything (IoE), network resource management,
intelligent networking, and the application of game theory, optimization
theory, and machine learning to network problems. Dr. Hassan’s achievements
include Best Poster and Best Oral Paper awards received at the International
Conference on Information Networking (ICOIN) in 2021 and 2023, respec-
tively

Zhu Han (S’01, M’04, SM’09, F’14) received the
B.S. degree in electronic engineering from Tsinghua
University, in 1997, and the M.S. and Ph.D. degrees
in electrical and computer engineering from the
University of Maryland, College Park, in 1999 and
2003, respectively. From 2000 to 2002, he was an
R&D Engineer of JDSU, Germantown, Maryland.
From 2003 to 2006, he was a Research Associate at
the University of Maryland. From 2006 to 2008, he
was an assistant professor at Boise State University,
Idaho. Currently, he is a John and Rebecca Moores

Professor in the Electrical and Computer Engineering Department as well as
in the Computer Science Department at the University of Houston, Texas.
He is also a Chair professor in National Chiao Tung University, ROC.
His research interests include wireless resource allocation and management,
wireless communications and networking, game theory, big data analysis,
security, and smart grid. Dr. Han received an NSF Career Award in 2010,
the Fred W. Ellersick Prize of the IEEE Communication Society in 2011, the
EURASIP Best Paper Award for the Journal on Advances in Signal Processing
in 2015, IEEE Leonard G. Abraham Prize in the field of Communications
Systems (best paper award in IEEE JSAC) in 2016, and several best paper
awards in IEEE conferences. Dr. Han was an IEEE Communications Society
Distinguished Lecturer from 2015-2018, and is AAAS fellow since 2019 and
ACM distinguished Member since 2019. Dr. Han is 1% highly cited researcher
since 2017 according to Web of Science.

Choong Seon Hong (S’95-M’97-SM’11-F’24) re-
ceived the B.S. and M.S. degrees in electronic en-
gineering from Kyung Hee University, Seoul, South
Korea, in 1983 and 1985, respectively, and the Ph.D.
degree from Keio University, Tokyo, Japan, in 1997.
In 1988, he joined KT, Gyeonggi-do, South Korea,
where he was involved in broadband networks as
a member of the Technical Staff. Since 1993, he
has been with Keio University. He was with the
Telecommunications Network Laboratory, KT, as
a Senior Member of Technical Staff and as the

Director of the Networking Research Team until 1999. Since 1999, he has
been a Professor with the Department of Computer Science and Engineer-
ing, Kyung Hee University. His research interests include future Internet,
intelligent edge computing, network management, and network security. Dr.
Hong is a member of the Association for Computing Machinery (ACM), the
Institute of Electronics, Information and Communication Engineers (IEICE),
the Information Processing Society of Japan (IPSJ), the Korean Institute
of Information Scientists and Engineers (KIISE), the Korean Institute of
Communications and Information Sciences (KICS), the Korean Information
Processing Society (KIPS), and the Open Standards and ICT Association
(OSIA). He has served as the General Chair, the TPC Chair/Member, or
an Organizing Committee Member of international conferences, such as the
Network Operations and Management Symposium (NOMS), International
Symposium on Integrated Network Management (IM), Asia-Pacific Network
Operations and Management Symposium (APNOMS), End-to-End Monitor-
ing Techniques and Services (E2EMON), IEEE Consumer Communications
and Networking Conference (CCNC), Assurance in Distributed Systems and
Networks (ADSN), International Conference on Parallel Processing (ICPP),
Data Integration and Mining (DIM), World Conference on Information
Security Applications (WISA), Broadband Convergence Network (BcN),
Telecommunication Information Networking Architecture (TINA), Interna-
tional Symposium on Applications and the Internet (SAINT), and International
Conference on Information Networking (ICOIN). He was an Associate
Editor of the IEEE TRANSACTIONS ON NETWORK AND SERVICE
MANAGEMENT and the IEEE JOURNAL OF COMMUNICATIONS AND
NETWORKS. He currently serves as an Associate Editor for the International
Journal of Network Management.

https://hardhat.org/
https://sepolia.etherscan.io/
https://etherscan.io/apis

	Introduction
	RELATED WORK
	PRELIMINARIES
	Decentralized Autonomous Organization
	Structured Transparency
	Multi-signature wallet

	PROPOSED FRAMEWORK
	 DAO Membership Tokens (DAOMTs)
	Membership Enrollment in ODAO and VDAO
	Member Expulsion in ODAO and VDAO
	Transferring ODAOC and VDAOC
	Partially Decentralized Orchestration of FL process in DAOFLC through Multi-Signature Contract
	Execution Workflow of DAO-FL framework
	Commercializing GM and Transferring ownership

	IMPLEMENTATION, DEPLOYMENT, AND EVALUATION
	Implementation and Deployment
	Evaluation on Threat Models
	Qualitative Evaluation and Discussion
	Applicability, Limitations, and Future directions
	Case Studies
	Inventory and Logistics Operations in Supply Chain Management
	Fraud Detection in Financial Institutions

	Conclusion
	Appendix A: Demonstrative metadata for FL-NFT, ODAOMT, and VDAOMT
	Appendix B: DAOMTC and DAOC UML Diagram
	Appendix C: ODAOMTC, ODAOC, VDAOMTC, VDAOC, FLTokenC, DAOFLC, FLNFT, and MultiSigC UML Diagram
	References
	Biographies
	Umer Majeed
	Sheikh Salman Hassan
	Zhu Han
	Choong Seon Hong

